290 likes | 469 Views
Astrophysics of high energy cosmic-rays. Eli Waxman Weizmann Institute, ISRAEL. “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000. Cosmic ray flux and Composition. log [dJ/dE]. E -2.7. Galactic. Protons. E -3. X-Galactic. Heavy Nuclei. Galactic plane
E N D
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000
Cosmic ray flux and Composition log [dJ/dE] E-2.7 Galactic Protons E-3 X-Galactic Heavy Nuclei Galactic plane enhancement Light Nuclei (p?) Isotropy 1 106 1010 E [GeV] Ucr(1GeV)=1 eV/cm3 [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]
Challenge I: Acceleration v R B v
Brightest known sources • AGN jets (steady): G~ few requires L>1047 erg/s Few, brightest AGN • GRBs (transient): G~ 300 requires L>1051 erg/s Average Lg~1052 erg/s [Srittmatter 82 Biermann & Strittmatter 87] [Waxman 95; Vietri 95; Milgrom & Usov 95]
The Suspects losses 1/b [Hillas 84; Arisaka 02]
Comments on “Magnetars” • Newborn Neutron stars (Hypothesis) with: B~1014G, W~104/sec LEM~1050 erg/s for t<1 min. • Some difficulties: Wind should penetrate envelope with <10-12 Msun entrainment Acceleration mechanism: Unknown [e.g. Blasi, Epstein, Olinto 00; Arons 02] EM wind NS ~1 Msun envelope
Challenge II: Propagation (GZK) g p+(p0) CMB n (p) p 1000 100 10 0.5 1.0 3.0 [Greisen 66; Zatsepin & Kuzmin 66]
[Waxman 95] Model • Fly’s Eye fit for Galactic heavy (<1019eV): JG~E-3.50 • X-Galactic protons: Generation spectrum (shock acceleration): Generation rate(GRB motivated): Redshift evolution ~ SFR (GRB motivated).
[Bahcall & Waxman 02] Model vs. Data X-G Model: Ruled out 7s 5s
Data/Model consistency Yakutsk, Fly’s Eye, HiRes: Consistent with XG protons: + GZK • AGASA (25% of total exposure): Consistent below 1020eV Excess above 1020eV: 2.2+/-0.8 8 observed New source/New physics/ 25% energy Local inhomogeneity over-estimate • Need: Large, hybrid 1018eV to 1020eV detector (Auger) ?
The Auger Observatory: 103.5 km2 [Cronin 92, Watson 93]
Gamma-ray Bursts M on ~1 Solar Mass BH Relativistic Outflow G~300 e- acceleration in Collisionless shocks e-Synchrotron MeV g’s Lg~1052erg/s [Meszaros, ARA&A 02]
Protons Acceleration: Particle spectrum: p energy production: Electrons MeV g’s: g spectrum g energy production [Waxman 95] Proton/electron acceleration [Frail et al. 01 Schmidt 01]
GZK: Sources g [Waxman 95, 01] • AGN, Radio-galaxies • GRBs : • For RGRB(z=0)~0.5/Gpc3yr • Prediction: p [Schmidt 01] D lB [Miralda-Escude & Waxman 96]
GRBs: An illustrative example [Miralda-Escude & Waxman 96]
GRB Model Predictions • <2x1020eV: Homogeneous + GZK • >3x1020eV: Few, narrow spectrum sources Fluctuations (no homogeneous GZK) • For more: Lec. Notes Phys. review (astro-ph/0103186)
“Standard Model” GRB n’s Weak dependence on model parameters [Waxman & Bahcall 97, 99] [Rachen & Meszaros 98; Guetta, Spada & Waxman 01]
Diffuse n Flux Bound • Observed JCR(>1019eV) pg losses on CMB z<0.25 • For Sources with tgp<1: • Strongest know z evolution (QSO, SFR): [Waxman & Bahcall 99, Bahcall & Waxman 01]
tgp for known sources e’g p+ e+ eg n e- ep
Anita (Radio, Balloon) Antares (0.1 Gton) Nemo (1 Gton)
The AMANDA South-pole experiment
AMANDA neutrino event [Andres et al., Nature 01]
Summary • Yakutsk, Fly’s Eye, HiRes: Consistent with GZK AGASA: >1020eV excess • Main Challenge: Astrophysical accelerator physics Candidate: GRBs • Hybrid, 103.5km2Auger: GZK spectrum; Constraints on astro. sources • UHE CRs High energy n sources: 1--103TeV: 1 km3 (Optical Cerenkov) detectors Amanda, Antares, Nestor, IceCube, Nemo >>103TeV: >>1 km3 (Radio Cerenkov) detectors Anita, Rice
n telescopes: some prospects • GRB n detection nm nt:t appearance Lorentz Inv. (1-v/c : 10-16), Weak equivalence principle (FL/c3 : 10-6)