1 / 10

Calculation of the Environmental Benefits of Water Conservation BMP’s

Katie Coughlin, Ph. D. Lawrence Berkeley National Lab kcoughlin@lbl.gov. Calculation of the Environmental Benefits of Water Conservation BMP’s. LBNL Team Robert Van Buskirk Camilla Dunham-Whitehead Peter Chan Chris Bolduc UC Berkeley Michael Hanemann. CUWCC Workshops

pete
Download Presentation

Calculation of the Environmental Benefits of Water Conservation BMP’s

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Katie Coughlin, Ph. D. Lawrence Berkeley National Lab kcoughlin@lbl.gov Calculation of the Environmental Benefits of Water Conservation BMP’s • LBNL Team • Robert Van Buskirk • Camilla Dunham-Whitehead • Peter Chan • Chris Bolduc • UC Berkeley • Michael Hanemann CUWCC Workshops September 20-21 2006

  2. Outline • Conceptual Discussion • Definition of environmental benefits as an avoided cost • Assumptions and constraints imposed by the modeling framework • Ecological impacts and environmental values • Model Application • Model organization and output • Model input and interaction with the Avoided Cost model • Example Calculations • Questions and Discussion

  3. Conceptual Discussion:Definition of environmental benefits as an avoided cost • Calculate value in $/volume of environmental benefits of reduced water use • The environmental benefit (EB) valuations can then be included in the cost-benefit analysis of water conservation BMP’s • Look at direct benefits of reduced raw water withdrawals which are not already accounted for in other environmental programs • Two exceptions: avoided cost of waste-water treatment for urban run-off; environmental benefits of reduced energy use for system operations • Like all avoided costs, this value is hypothetical, i.e. one must make numerous assumptions about the future • Philosophical issues related to monetization of environmental impacts are not part of this project

  4. Conceptual Discussion:Assumptions and constraints • Requirements for this project include: • User inputs annual or seasonal water savings; no environmental data required • Model should cover all of CA and be “generic” • Compatibility with AC model • No double counting • Use data from literature reviews • Allow users to modify all default data values • These impose constraints on the model: • Use annual average environmental data • Benefits are product of environmental impact and economic value • No accounting for water year type • Limited spatial resolution (hydrologic regions) • Doesn’t model system operations • Doesn’t consider water transfers • Focus on accounting: all regions, services and sources • This type of integrated calculation has not been done before

  5. Geographic resolutionCalWater 2.2 Hydrologic Regions

  6. Conceptual Discussion:Environmental (ecological) impacts • EB=unit environmental impact * economic value per unit • Ecological impacts are defined in terms of services: maintenance of fish populations; maintenance of wetlands; improved water quality • UEI = fraction*(service per unit volume of water) • Fraction = probability that a unit of water saved at a source will be used by a particular service • Use the most basic, robust physical parameters to define the relationship between service and water availability • Account for seasonal variation in water requirements • Depends on water source type and location

  7. Unit Environmental impacts • Determine the relationship between environmental service and water availability • Express as unit impact per acre-foot • Multiply by fraction for this service to get net impact per unit of saved water

  8. Conceptual Discussion:Economic values • EB=unit environmental impact * economic value per unit • Units are $/service unit • Economic values can be market or non-market • Market values exist in the form of prices paid for land acquired expressly to restore riparian or wetland habitat • Non-market values are drawn from the available literature and focus primarily on recreational uses such as fishing • Urban runoff: use wastewater treatment costs • Energy benefits: use emissions permit prices • No geographic variation

  9. Data Sources • Fish habitat (4.2.4) • Populations and Regional Distribution: NOAA-NMFS West Coast Salmon Biological Review Team Report (2003) and Calfish www.calfish.org • Flow data: CADWR water plan • Economic values: BASES study; Sportfishing Values Database www.indecon.com/fish/signin.asp • Riparian habitat (4.2.2) • River data: California Rivers Assessment www.ice.ucdavis.edu/newcara • Flow fractions: DWR water plan • Species distributions: California Natural Diversity Database www.dfg.ca.gov/whdab/html/cnddb.html • Evapotranspiration rates: CIMIS • Species water needs: California Native Plant Society www.cnps.org • Economic values: purchases for conservation and restoration • Wetlands (4.2.3) • Flow fractions: DWR water • Water requirements: USBR-DWR CALSIM II demands data; LBNL (N. Quinn) spreadsheet model • Economic values: purchases for conservation and restoration

  10. Data Sources • Reservoir and lake recreation (4.2.1) • Average seasonal storage: California Data Exchange Center www.cdec.org • Storage-area relation: USBR-DWR CALSIM II data • Visitation rates, visitation elasticity, economic values: QED studies from 1980 • Economic values: BASES study at www.indecon.com/fish/signin.asp • Interagency Ecological Program quarterly reports iep.water.ca.gov • California Natural Diversity Database www.dfg.ca.gov/whdab/html/cnddb.html • California Native Plant Society www.cnps.org • San Francisco Bay Salinity (4.2.5) • Flow-salinity data: DWR Dayflow model • Species distributions: Interagency Ecological Program quarterly reports iep.water.ca.gov • Salinity impacts: Kimmerer et al. studies • No economic value data • Energy Benefits • User input of energy intensity and energy/emissions costs • Urban runoff • User input of runoff fractions and wastewater treatment costs

More Related