1 / 51

KONTROLL VENTILER

KONTROLL VENTILER. JAN O HJETLAND. Fag disipliner. Prosess Material Instrument ”Piping” Maling Innkjøp Produksjons oppfølging. Hvilken type kontroll ventiler har vi. Sete ventil (Globe) Kule ventil (Bal) Sving ventil (Butterfly). Hva er en kontroll ventil.

prem
Download Presentation

KONTROLL VENTILER

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KONTROLL VENTILER • JAN O HJETLAND

  2. Fag disipliner • Prosess • Material • Instrument • ”Piping” • Maling • Innkjøp • Produksjons oppfølging

  3. Hvilken type kontroll ventiler har vi Sete ventil (Globe) Kule ventil (Bal) Sving ventil (Butterfly)

  4. Hva er en kontroll ventil En kontroll ventil er arbeideren i en prosess lup

  5. BUTTERFLY

  6. Ball

  7. Globe

  8. CAGE

  9. LC LC Separator Level Control Gas outlet Crude Inlet from well head Gas Oil Oil Water Oil level Control valve Water level Control valve

  10. 1) Beregning av ventilstørrelse 2) Beregning av støy / andre forhold 3) Valg av ventiltype - gjenta fra 1 4) Valg av materialer / pakkboks 5) Beregning og valg av aktuator 6) Tilleggsutstyr / endelig beskrivelse Ventildimensjonering og valg - fremgangsmåte Gjenta beregningene med relevante ventildata

  11. KURVE

  12. 6) Tilleggsutstyr / endelig beskrivelse 5) Beregning og valg av aktuator 2) Beregning av støy / andre forhold 3) Valg av ventiltype - gjenta fra 1 4) Valg av materialer / pakkboks 1) Beregning av ventilstørrelse Beregne ventilstørrelse - bakgrunn • Har stort sett vært basert på leverandørenes egne standarder / metoder • Standardiseringsarbeide har pågått siden tidlig 1960 • ISA etablerte en komite i 1967 som skulle utvikle og distribuere standard ligningssett - ble til en “American National Standard” • IEC benyttet ISAarbeidet som basis for å formulere internasjonale standarder • ISA og IEC standardene er harmonisert, med noen få unntak (nomenklatur) • ANSI / ISA Standard betegnes S75.01 • IEC standard har betegnelsen 534-2-1 og 534-2-2 (inkompressible og kompressible medier) Disse standardene inneholder også metodikk for støyberegninger

  13. Støy i reguleringsventiler • Støy i reguleringsventiler er en stor bidragsyter til anleggets totale bakgrunnsstøy • Myndighets krav blir stadig strengere • Støykilder i et anlegg er vanskelige å identifisere, p.g.a. mange forskjellige kilder, refleksjoner, forplantning av støy etc. • Brukere som ser bort fra støykravene er eksponert for unødvendige belastninger • Kontraktører som garanterer å møte spesifikasjoner for støy er eksponert for potensielle erstatningssaker / kostnader ved korreksjoner

  14. Aerodynamiske støykilder

  15. R 1 + r R + r LpA = F + 10 Log Linje-kilde Tverrsnitt av rør For hver dobling av avstand, tapes 3 dBa

  16. Noise Trims - Whisper I • Splits flow into small rectangular passages • Increases Peak Frequency • Complimentary body design • Most effective dP/P1 <0.6 • Up to 20 dB attenuation

  17. Whisper III • Flow passes through small holes • Level 3 Uses 1.6 mm dia • Level 1 Uses 3.2 mm dia • 6 dBA difference • Increases frequency • Complimentary body design • Jet independence • Up to 30 dB attenuation

  18. C3 B3 1.6 mm 1.6 mm 1.6 mm A3 Whisper III C/d = 3.4 dP/P1< 0.99 C/d = 2.7 dP/P1 < 0.75 P2 P1 C/d = 2.0 dP/P1 < 0.6 Air Flow

  19. WhisperFlo • Staged Reduction of Pressure • Shift Frequency Spectrum Higher • Unique Passage Shape • Jet Independence • Manages Velocity Using an Expanding Area Principle • Complimentary Body Design • Up to 40 dB attenuation

  20. WhisperFlo Flow Passage Outlet Inlet

  21. Lyddemper

  22. Reduksjon av støy

  23. Begrense støy-generering • Globe ventil med diffuser

  24. VESKE • FLASING • CAVITATION

  25. Liquid Flow through an Orifice Vena Contracta Highest Velocity Pressure Velocity Lowest Pressure

  26. Cavitation Vena Contracta Pressure Vapour Pressure Vapour Bubbles Collapse Vapour Bubbles Form

  27. High Recovery Valves (Km= Fl2= 0.5) Line of sight valves; Butterfly, Ball Pressure Pressure Low Recovery Valves (Km = Fl2=0.8) Globe valves

  28. Cavitation Damage

  29. Cavitation - Path Treatment • Cover exposed areas with resistant material • 316 Sst < 18 HRC • 416 Sst (Std trim material) 38 HRC min • 440C 56 HRC • Alloy 6 (Stellite) 36 to 44 HRC • Ceramic • Tungsten Carbide

  30. Cavitation - Path Treatment • Cover exposed areas with resistant material • 316 Sst < 18 HRC • 416 Sst (Std trim material) 38 HRC min • 440C 56 HRC • Alloy 6 (Stellite) 36 to 44 HRC • Ceramic • Tungsten Carbide

  31. Cavitation - Path Treatment Cavitrol III 1 Stage • Flow down • Holes directly opposing • Keeps any cavitation in centre of cage away from surfaces

  32. Cavitation - Source Treatment • Treating the cause of cavitation • Use valve trim that avoids cavitation • Low recovery valve • High FL2( KM) • Change from rotary valve to globe Low Recovery Valve (Km)FL2 = 0.85 No Cavitation Pressure P1 P2 PV High Recovery Valve (Km) FL2 = 0.5 Cavitation

  33. Hole shape The hole is designed to maximize flow without flow separation from the wall, and with enough recovery volume for the fluid from the previous orifice . Pilot hole and recovery volume flow Controlling orifice High Capacity Low Recovery

  34. Hole Design - Control Flow Separation Any cavitation that does occur is outside cage wall Thin Plate Low Capacity Low Recovery Thick Plate High Capacity High Recovery Cavitrol Hole High Capacity Low Recovery

  35. Staged Pressure Drop 1st Stage 2nd Stage 3rd Stage Standard Trim Staged Cavitrol Trim Note the uneven pressure drops. The first stage takes the majority of the drop so the last stage takes very little and can control Pvc very close to Pv. P1 P2 PV

  36. NO SIGNIFICANT PRESSURE DROP MORE THAN 90% OF THE PRESSURE DROP VERY LOW INLET PRESSURE TO FINAL STAGE CAVITROL IV • CAV4 with Cavitrol IV Trim • Trim can take pressure drops up to 448 Bar • Protected seating surface eliminates significant pressure drop across seating surfaces • Trim can be used in other globe or angle valves • Staged clearance flows

  37. CAV4 Special Products Group MINI CAV4 TRIM AVAILABLE IN 2” CLASS 1500 AND 2” CLASS 2500 DESIGN EHS VALVES 1” DIAMETER PORT, 3/4” TVL Cv RANGE - .1 TO 2.9 SAME LIMITS AND FEATURES AS STANDARD CAV4 USED FOR METHANOL LETDOWN

  38. Velocity - Cavitrol Outlet Stage: Average velocity = 45 ft/sec Peak velocity - 57 ft/sec Second stage velocity lower than First stage

  39. LC LC Separator Level Control Gas outlet Crude Inlet from well head Gas Oil Oil Water Oil level Control valve Water level Control valve

  40. Challenges of these applications • Cavitation • High pressure drops • Erosion • High pressure drops • Sand and other particles • Corrosion • Sour conditions • Chloride stress cracking

  41. Produced Water/Water Injection Valve Issues • High pressure drop • Can lead to damaging cavitation and erosion • Solid particulate can lead to plugging of conventional severe service trim • Tight shutoff required • Protects the valve from low flow damage when in the closed position • Possible corrosion issues • Issues with stress corrosion cracking need to be addressed • Depends upon H2S and chloride concentration Typical stacked disc trim

  42. Erosion • Hard surfaces • decreases the amount or speed of damage • Alloy 6 • 440C • Tungsten Carbide • Ceramics Increasing erosion resistance

  43. DST Flow Down W678-1

  44. Rotary Actuator

  45. HOOK UP

  46. DVC6000

More Related