1 / 21

CSE245: Computer-Aided Circuit Simulation and Verification

CSE245: Computer-Aided Circuit Simulation and Verification. Lecture Note 4 Model Order Reduction (2) Spring 2010 Prof. Chung-Kuan Cheng. Model Order Reduction: Overview. Explicit Moment Matching AWE, Pade Approximation Implicit Moment Matching (Projection Framework)

reginae
Download Presentation

CSE245: Computer-Aided Circuit Simulation and Verification

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSE245: Computer-Aided Circuit Simulation and Verification Lecture Note 4 Model Order Reduction (2) Spring 2010 Prof. Chung-Kuan Cheng

  2. Model Order Reduction: Overview • Explicit Moment Matching • AWE, Pade Approximation • Implicit Moment Matching (Projection Framework) • Krylov Subspace Methods • PRIMA, SPRIM • Gaussian Elimination • TICER, Y-Delta Transformation

  3. Conventional Design Flow Parasitics resistance, capacitance and inductance cause noise , energy consumption and power distribution problem Function Sepc Beh. Simul RTL Logic Synth. Stat. Wire Model Gate-Lev. Sim Gate-level Net. Front-end Back-end Floorplanning Para. Extraction Place & Route Layout

  4. Parasitic Extraction R,L,C Extraction Model Order Reduction

  5. Moment Matching Projection method • Key ideal of Model Order reduction: “Moments Matching” and “Projection” • Step1: identify internal state function and variables. • Step2: Compose moments matching. (Pade, Taylor expression). • Step3: Project matrix with matching moments. (Block Arnoldi (PRIMA) or block Lanczos (PVL)) • Step4: Get the reduced state function.

  6. Explicit V.S. Implicit Moment Matching • Explicit moment matching methods • Numerically ill-conditioned • Implicit moment matching methods • construct reduced order models through projection, or congruence transformation. • Krylov subspaces vectors instead of moments are used.

  7. Congruence Transformation • Definition: • Property: Congruence transformation preserves semidefiniteness of the matrix

  8. Krylov Subspace • Given an n x q matrix Vq whose column vectors are v1, v2, …, vq. The span of Vq is defined as • Given an n x n matrix A and a n x 1 vector r the Krylov subspace is defined as

  9. PRIMA • Passive Reduced-order Interconnect Macromodeling Algorithm. • Krylov subspace based projection method • Reduced model generated by PRIMA is passive and stable. PRIMA (system of size q, q<<n) (system of size n) where

  10. PRIMA • step 1. Circuit Formulation • step 2. Find the projection matrix Vq • Arnoldi Process to generate Vq

  11. PRIMA: Arnoldi

  12. PRIMA • step 3. Congruence Transformation

  13. PRIMA: Properties • Preserves passivity, and hence stability • Matches moments up to order q (proof in next slide) • Original matrices A and C are structured. • But and do not preserve this structure in general

  14. PRIMA: Moment Matching Proof Used lemma 1

  15. PRIMA: Lemma Proof

  16. SPRIM • Structure-Preserving Reduced-Order Interconnect Macromodeling • Similar to PRIMA except that the projection matrix Vq is different • Preserves twice as many moments as PRIMA • Preserves structure • Preserves passivity, stability and reciprocity • Matching the same number of moment as PRIMA, but preserve the structure which can reduced numerical calculation.

  17. SPRIM • Recall • Suppose Vq is generated by Arnoldi process as in PRIMA. Partition Vq accordingly • Construct New Projection Matrix

  18. SPRIM • Congruence Transformation • Now structure is preserved • Transfer function for the reduced order model

  19. Traditional Y- Transformation • Conductance in series • Conductance in star-structure n0 n1 n2 n1 n2 n1 n1 n0 n3 n2 n2 n3

  20. TICER (TIme Constant Equilibration Reduction) • 1) Calculate time constant for each node • 2) Eliminate quick nodes and slow nodes • Quick node: Eliminate if • Slow node: Eliminate if • 3) Insert new R’s/C’s between former neighbors of N • If nodes j and k had been connected to N through gjN and gkN, add a conductance of value gjNgkN/GN between j and k • If nodes j and k had been connected to N through cjN and gkN, add a capacitor of value cjNgkN/GN between j and k

  21. TICER: Issues • Fill-in • The order that nodes are eliminated matters • Minimum Degree Ordering can be implemented to reduce fill-in • May need to limit number of incident resistors to control fill-in • Error control leads to low reduction ratio • Accuracy • Matches 0th moment at every node in the reduced circuit. • Only Correct DC op point guaranteed

More Related