1 / 20

Chapter 16: Multiagent Systems

Chapter 16: Multiagent Systems. Service-Oriented Computing: Semantics, Processes, Agents – Munindar P. Singh and Michael N. Huhns, Wiley, 2005. Highlights of this Chapter. Applicability in Service-Based Systems Multiagent Architecture Agent Types Lifecycle Management

sauda
Download Presentation

Chapter 16: Multiagent Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 16:Multiagent Systems Service-Oriented Computing: Semantics, Processes, Agents– Munindar P. Singh and Michael N. Huhns, Wiley, 2005

  2. Highlights of this Chapter • Applicability in Service-Based Systems • Multiagent Architecture • Agent Types • Lifecycle Management • Consistency Maintenance • Modeling Other Agents • Cognitive Concepts Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  3. Basic Problems of MAS • Distributing control among agents • Describing, decomposing, distributing tasks • Either the designer does it • Or the agents negotiate it autonomously • Designing agents to support the above • Interacting and communicating • Negotiating • Special case in cooperative, homogeneous setting: maintaining consistency Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  4. (de facto) Standard Agent TypesDesign-time (static) breakdown of functionality and tasks Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  5. Brokerage ServiceViewed as an Agent Type • Cooperates with a Directory Service • Accepts requests from agents to recruit one or more agents who can provide a service • Uses knowledge about the requirements and capabilities of registered agents to • Identify appropriate agents for an interaction • Negotiate with selected agents • Potentially learn about the properties of the responses • Example: Brokerage determines that advertised results from agent X are incomplete and seeks a substitute for X Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  6. FIPA Agent Management SystemFoundation for Intelligent and Physical Agents (now in IEEE) • Good • Architecture (notions of agents and interaction) • Wrong • Protocol models • Mentalist focus Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  7. Agent Management System: 2Analogous to an JEE Container • Handles the creation, registration, location, communication, migration, and retirement of agents • White pages, e.g., agent location and naming (from AMS) • Agent identifiers support social names, transport addresses, name resolution services • Yellow pages, e.g., service location and registration services (from DF) • Agent message transport services Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  8. Agent Frameworks • JADE, a popular FIPA-compliant agent framework for multiagent systems: • http://jade.tilab.com/ • (FIPA-OS and Zeus having died) Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  9. Consistency Maintenance across Services A truth maintenance system (TMS) helps maintain consistency • Performs a form of propositional deduction • Maintains justifications and explains the results of its deductions • Updates beliefs incrementally when premises change TMSs help us • Deal with atomicity • Maintain modular models Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  10. justifications Problem Solver TMS beliefs Architecture of TMS-Based Agent • Problem solver: decides on actions • TMS: maintains a network of beliefs • Justifications of a belief based on others help make corrections to reasoning Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  11. Knowledge Base Integrity • Stability: believe everything justified validly; disbelieve everything else • Well-Foundedness: no circular beliefs • Logical consistency: no logical contradictions • Completeness: find a consistent state if one exists, or report failure Problems arise when knowledge is distributed Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  12. Distributed TMS • Each agent has a justification-based TMS • Each datum can have status • OUT (not believed) • IN: valid local justification (believed) • EXTERNAL: must be IN for some agent • When a problem solver adds or removes a justification, the DTMS checks if some datum is affected • Unlabels data based on the changed datum • Relabels all unlabeled shared data (in one or more iterations) • Notifies other agents who have an interest in any datum, i.e., those with whom the datum is shared Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  13. Degrees of Logical Consistency • Inconsistency: an agent is internally inconsistent • All bets are off with such an agent • Local Consistency: all agents are individually consistent • Totally disconnected agents can’t interact effectively • Global Consistency: union of KBs is consistent • Total integration is not viable in open settings • [DTMS] Local-and-Shared Consistency: agents are locally consistent and agree about any data they might share • Captures essential interdependence Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  14. Cooperative Service: 1 Client f3: afford(xcorp) IN r3: buy(X) :- query(Broker recommend(X)), afford(X) IN ? recommend(?X) Broker f1: afford(xcorp) OUT f2: cash-rich(xcorp) IN r2: recommend(X) :- takeover-bid(X) IN r1: takeover-bid(X) :- cash-rich(X) IN Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  15. Cooperative Service: 2 Client f3: afford(xcorp) IN r3: buy(X) :- query(Broker recommend(X)), afford(X) IN recommend(XCorp) Broker f1: afford(xcorp) OUT f2: cash-rich(xcorp) IN r1: recommend(X) :- takeover-bid(X) IN r2: takeover-bid(X) :- cash-rich(X) IN f3: recommend(xcorp) IN Shared with: Client; Justification: (f2 r1 r2) Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  16. Cooperative Service: 3 Client f3: afford(xcorp) IN r3: buy(X) :- query(Broker recommend(X)), afford(X) IN f4: recommend(xcorp) EXTERNAL Shared with: Broker; Justification: ( ) f5: buy(xcorp) IN Justification: (f3 f4 r3) Broker f1: afford(xcorp) OUT f2: cash-rich(xcorp) IN r1: recommend(X) :- takeover-bid(X) IN r2: takeover-bid(X) :- cash-rich(X) IN f3: recommend(xcorp) IN Shared with: Client; Justification: (f2 r1 r2) Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  17. Cooperative Service: 4 Client f3: afford(xcorp) IN r3: buy(X) :- query(Broker recommend(X)), afford(X) IN f4: recommend(xcorp) EXTERNAL Shared with: Broker; Justification: ( ) f5: buy(xcorp) IN Justification: (f3 f4 r3) relabel recommend(XCorp) Broker f1: afford(xcorp) OUT f2: cash-rich(xcorp) IN --> OUT r1: recommend(X) :- takeover-bid(X) IN r2: takeover-bid(X) :- cash-rich(X) IN f3: recommend(xcorp) IN --> OUT Shared with: Client; Justification: (f2 r1 r2) Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  18. Cooperative Service: 5 Client f3: afford(xcorp) IN r3: buy(X) :- query(Broker recommend(X)), afford(X) IN f4: recommend(xcorp) OUT Shared with: Broker; Justification: ( ) f5: buy(xcorp) OUT Justification: (f3 f4 r3) Broker f1: afford(xcorp) OUT f2: cash-rich(xcorp) OUT r1: recommend(X) :- takeover-bid(X) IN r2: takeover-bid(X) :- cash-rich(X) IN f3: recommend(xcorp) OUT Shared with: Client; Justification: (f2 r1 r2) Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  19. DTMS Scope • Ensures consistent state with respect to shared data • Considers one state of the world • Even though agents may learn or unlearn data about the same state • Not suitable for dealing with a changing world • Cannot deal with real-world actions that an agent cannot undo Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  20. Chapter 16 Summary Study multiagent systems because interactions among agents make them interesting • Communication among agents is key, although markets (later chapter) only support implicit communication through prices • Programming environments support agent interactions • Consistency maintenance is a major challenge • Agents must model agents; simple techniques are often adequate; more subtle techniques can require extensive reasoning power Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

More Related