170 likes | 342 Views
Thermoreflectance microscopy and spectroscopy on integrated circuits. M. Bardoux, C. Boué, C. Filloy, D. Fournier, G. Tessier UPR A005 CNRS, ESPCI, 10 Rue Vauquelin, 75005 Paris. 1 Thermoreflectance under visible illumination. CCD thermoreflectance imaging. 4f < 40 Hz. D R= D T. CCD.
E N D
Thermoreflectance microscopy and spectroscopy on integrated circuits M. Bardoux, C. Boué, C. Filloy, D. Fournier, G. Tessier UPR A005 CNRS, ESPCI, 10 Rue Vauquelin, 75005 Paris
CCD thermoreflectance imaging 4f < 40 Hz DR= DT CCD White lamp Optical measurement of DR (at virtually any wavelength) Filter measurement of DT Microscope Pow.1: f Circuit
FoR j FoDR FoRamb I1 I2 I3 I4 t I1 I2 I3 I4 CCD thermoreflectance imaging 4f < 40 Hz CCD White lamp Filter DR around 10-5 DT around 0.1 K Resolution 300 nm Microscope Amplitude Pow.1: f Circuit
Transistor arrays (ST Microelectronics) Not leaky structures: leaky structures: 13 mm 125 mm 125 mm IDS = 0 - 60 mA, F=1 Hz l=518 nm
Vertical Cavity Surface Emission Lasers (VCSELs) M Bardoux, ESPCI, S. Bouchoule, A. Bousseksou, LPN Laser emission (1.5 mm) VCSEL Cleavage Vertical temperature distribution
Side view (substrate, mirror, active layers) Top view (emission facet) T (°C) Active layers Bragg mirror Substrate 90 mm 250 mm T (°C)
T(K) 80 mm Numerical circuit 180 nm technology (TIMA Grenoble) • Clock frequency 225 MHz • Lock-in at the repetition frequency of the test vectors (7.5 Hz) Thermoreflectance Resolution : 350 nm Backside imaging ?
Thermoreflectance with an InGaAs camera Si Transparency region 4f < 40 Hz InGaAs CCD White lamp Microscope Non coherent sources eliminate interference in the substrate Pow.1: f
Near Infrared back side imaging DR/R X50, 0.6N.A. objective Resolution 2 mm (Diffraction limit : 1.7 mm) Dissipated power : 500 mW
DR/R Resolution difficult to assess (noisy image) Average of FWHM : 650 nm Effective N.A. : 1.55 Diffraction limit with a 0.42 N.A. objective: 2.4 mm
Thermo-/photo- reflectance spectroscopy Compact fibered spectrometer + focusing lens R and vary sharply due to interference CCD spectrometer Spatial selectivity : a few mm Spectral resolution : 1 nm typ. Sensitivity : DR/R~ 3.10-5 in 1 min White Lamp Filter P. Supply 2: 4F Microscope P. Supply 1: F Circuit
Photoreflectance spectroscopy on passive materials SiO2 (glass) Amplitude DR/R Measurement l=615 nm F=0.5 Hz Heating l=10.6 mm F=1 Hz CCD spectrometer White Lamp F=3Hz Filter P. Supply 2: 4F Microscope P. Supply 1: F Modulated CO2 laser F=7.5 Hz Sample 1850 mm
Gold nanospheres in silica (preliminary results) M. Rashidi, B. Palpant, INSP x10-4 DR/R SiO2 + gold nanospheres (≈ 4 nm) Measurement DT ≈ 3 K t= 68 nm Heating l=10.6 mm Si substrate x10-3 DR/R Model DT=50 K Majid Rashidi, INSP
Conclusions 1 ) Visible thermoreflectance resolution ≈ 300 nm precision of calibrated measurement ≈ 5% 2 ) NIR imaging with Solid Immersion Lenses - Resolution : 650 nm at l=1.65 nm, effective N.A.: 1.55 - Resolution improvement : use narrow band illumination better contact SIL / substrate 3) Spectroscopy Fast and sensitive DR/R~ 3.10-5 in 1 min Good spectral resolution (1 nm) Performance spectrometer dependent DR/R~ 5.10-7 should be achievable in 1 min with a 1.5 108 e- well depth.