1 / 97

Automated Verification Methods for Software Safety

Explore Proof Generation, Model Abstraction, and Decision Procedures for Ensuring Software Safety.

sheriff
Download Presentation

Automated Verification Methods for Software Safety

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Proofs and Counterexamples RupakMajumdar

  2. In the good old days… Decision Procedure yes  no

  3. Now… Invariant Generation Model Predicate Abstraction Decision Procedure Pre- Process yes  no Proof Interpolant + , - Boolean SAT Sooh, short answer: yes with an if, long answer, no with a but. –Reverend Lovejoy

  4. It’s the Application! • Validating large scale software w.r.t. partial specifications • Rules in documentation • Order of operations & data access • Resource management • Incomplete, unenforced, wordy • Violated rules ) bad behavior • System crash or deadlock • Unexpected exceptions • Failed runtime checks

  5. lock unlock unlock lock Property: Double Locking “An attempt to re-acquire an acquired lock or release a released lock will cause a deadlock.” Calls to lock and unlock must alternate.

  6. lock unlock unlock lock Example Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4: } while(new != old); 5: unlock (); return; } Does program Example satisfy the locking spec?

  7. Ok, but what does this have to do with Invariant Generation Model Predicate Abstraction Decision Procedure Decision Procedure Pre- Process yes yes   vs no no Proof Interpolant + , - Boolean SAT

  8. Automatic Verification of Programs Yes Safe Search Program [POPL 02] Automatic Tool Refine No Property [POPL 04] Trace Model and analyze program behavior in the language of logic, reduce reasoning about programs to reasoning about logic

  9. pc lock old new q  3   5  5  0x133a pc lock old new q  4   5  6  0x133a What a program really is… State Transition 3: unlock(); new++; 4:} … Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4: } while(new != old); 5: unlock (); return;}

  10. The Safety Verification Problem Error Safe Initial Is there a path from an initial to an error state ? Problem:Infinitestate graph Solution : Set of states ' logical formula

  11. Representing States asFormulas • [F] • states satisfyingF {s | s² F } • F • FO fmla over prog. vars • [F1] Å [F2] • F1ÆF2 • [F1] [ [F2] • F1 ÇF2 • [F] • : F • [F1] µ [F2] • F1 implies F2 • i.e. F1Æ: F2 unsatisfiable

  12. Idea 1: Symbolic Analysis Error Initial Program State Space Given F, and a program operation, describe a formula for the set of successor states “Strongest postcondition” 2. Iterate the SP, checking at each stage if Erroris hit, or if new states are added

  13. Idea 1: Symbolic Analysis Iterate the SP, checking at each stage if Erroris hit, or if new states are added CurrentReachÆ Error is unsat • OldReachÇSP(OldReach) •  CurrentReach Problem: Too many details tracked Symbolic Iteration may not terminate

  14. Idea 1’: Symbolic Analysis + Annotations Ask programmer for Invariant Check Invariant does not hit Error , and Invariant is closed under SP InvariantÆError is unsat • InvariantÇSP(Invariant) •  Invariant No more iterations: Programmer provides an inductive assertion, just make two queries Problem: Increased work for the programmer

  15. Idea 2: Predicate Abstraction Error Initial • [Graf-Saidi 97] Abstraction Program State Space • Abstraction: Predicates on program state • Signs: x > 0 • Aliasing: &x  &y • States satisfying the same preds are equivalent • Merged into single abstract state

  16. Example: Predicate Abstraction • For the red region above, the predicate abstraction is the set of “boxes” that cover the red region • For each small box , ask the theorem prover if Æ is satisfiable

  17. Idea 2: Predicate Abstraction Abstract • Search finite state space symbolically • Conservative • Abstraction safe ) System safe • Too coarse )spurious counterexample

  18. Idea 3: Counterexample Analysis Abstract Counterexamples: Analyze counterexamples to check feasibility 1. Feasible )BUG Get satisfying assignment from decision procedure: test demonstrating bug

  19. Idea 3: Counterexample Analysis Abstract Counterexamples: Analyze counterexamples to check feasibility 1. Feasible )BUG 2. Infeasible ) What predicates distinguish states across cut? 3. Build refined abstraction

  20. Idea 3: Counterex.-Guided Refinement • [Kurshan et al. 93] • [Clarke et al. 00] • [Ball-Rajamani 01] Abstract Refine • Add predicates to rule out spurious trace • Repeatreachability • Till safe or real trace is found • Or go on refining forever

  21. Idea 3: Counterex.-Guided Refinement Abstract safe Refine • Add predicates to rule out spurious trace • Repeatreachability • Till safe or real trace is found • Or go on refining forever

  22. Problem: Abstraction is Expensive Reachable Problem #abstract states = 2#predicates Exponential Thm. Prover queries • Observe • Fraction of state space reachable • #Preds ~ 100’s, #States ~ 2100 , • #Reach ~ 1000’s

  23. Solution1: Only Abstract Reachable States Solution Build abstraction on-the-fly, during search Problem #abstract states = 2#predicates Exponential Thm. Prover queries

  24. Solution1: Only Abstract Reachable States Solution Build abstraction on-the-fly, during search Problem #abstract states = 2#predicates Exponential Thm. Prover queries

  25. Solution1: Only Abstract Reachable States Solution Build abstraction on-the-fly, during search Problem #abstract states = 2#predicates Exponential Thm. Prover queries

  26. Solution1: Only Abstract Reachable States Safe Solution Build abstraction on-the-fly, during search Problem #abstract states = 2#predicates Exponential Thm. Prover queries

  27. Key Idea: Reachability Tree Initial Unroll Abstraction 1. Pick tree-node (=abs. state) 2. Add children (=abs. successors) 3. On re-visiting abs. state, cut-off 1 2 3 • Counterexample Analysis • Learn new predicates locally • Rebuild subtree with new predicates • “Lazy Abstraction” 5 4 3 [HenzingerJhalaM.Sutre02]

  28. Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 1 Reachability Tree Predicates:LOCK

  29. Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK lock() old = new q=q->next 2 LOCK 1 2 Reachability Tree Predicates:LOCK

  30. Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 2 LOCK [q!=NULL] 3 LOCK 1 2 3 Reachability Tree Predicates:LOCK

  31. Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 2 LOCK 3 LOCK q->data = new unlock() new++ 4 : LOCK 4 1 2 3 Reachability Tree Predicates:LOCK

  32. Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 2 LOCK 3 LOCK 4 : LOCK [new==old] 5 : LOCK 5 4 1 2 3 Reachability Tree Predicates:LOCK

  33. Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 2 LOCK 3 LOCK 4 : LOCK 5 : LOCK 5 unlock() 4 : LOCK 1 2 3 Reachability Tree Predicates:LOCK

  34. Analyze Counterexample Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK lock() old = new q=q->next 2 LOCK [q!=NULL] 3 LOCK q->data = new unlock() new++ 4 : LOCK [new==old] 5 : LOCK 5 unlock() 4 : LOCK 1 2 3 Reachability Tree Predicates:LOCK

  35. Analyze Counterexample Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK old = new 2 LOCK 3 LOCK new++ 4 : LOCK [new==old] 5 : LOCK 5 Inconsistent 4 : LOCK new == old 1 2 3 Reachability Tree Predicates:LOCK

  36. Repeat Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 1 Reachability Tree Predicates:LOCK, new==old

  37. Repeat Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK lock() old = new q=q->next 2 LOCK , new==old 1 2 Reachability Tree Predicates:LOCK, new==old

  38. Repeat Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 2 LOCK , new==old 3 LOCK , new==old q->data = new unlock() new++ 4 : LOCK , : new = old 4 1 2 3 Reachability Tree Predicates:LOCK, new==old

  39. Repeat Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 2 LOCK , new==old 3 LOCK , new==old 4 : LOCK , : new = old [new==old] 4 1 2 3 Reachability Tree Predicates:LOCK, new==old

  40. Repeat Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 2 LOCK , new==old 3 LOCK , new==old 4 : LOCK , : new = old [new!=old] 1 : LOCK, : new == old 4 4 1 2 3 Reachability Tree Predicates:LOCK, new==old

  41. Repeat Build-and-Search Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK 2 LOCK , new==old SAFE 3 LOCK , new==old 4 4 LOCK , new=old : LOCK , : new = old 1 5 5 : LOCK, : new == old 4 4 4 1 : LOCK , new==old 2 3 Reachability Tree Predicates:LOCK, new==old

  42. BLAST [HenzingerJhalaM.Sutre02] Yes Safe Abstract CProgram Refine No Property Trace

  43. Scaling BLAST Yes Safe Abstract CProgram Refine No Property Trace Key Problem: Find good predicates To find:1.Which predicates to track? 2.Where to track them?

  44. #Predicates grows with program size while(1){ 1: if (p1) lock() ; if (p1) unlock() ; … 2: if (p2) lock() ; if (p2) unlock() ; … n: if (pn) lock() ; if (pn) unlock() ; } T F T Tracking lock not enough Problem: p1,…,pn needed for verification Exponential reachable abstract states

  45. #Predicates grows with program size while(1){ 1: if (p1) lock() ; if (p1) unlock() ; … 2: if (p2) lock() ; if (p2) unlock() ; … n: if (pn) lock() ; if (pn) unlock() ; } : LOCK LOCK, p1 : LOCK, : p1 : LOCK, : p1 : LOCK, p1 : LOCK p1p2 p1: p2 : p1 p2 : p1: p2 2nAbstract States Problem: p1,…,pn needed for verification Exponential reachable abstract states

  46. LOCK , p2 : LOCK , : p2 : LOCK Predicates useful locally while(1){ 1: if (p1) lock() ; if (p1) unlock() ; … 2: if (p2) lock() ; if (p2) unlock() ; … n: if (pn) lock() ; if (pn) unlock() ; } : LOCK p1 LOCK , p1 : LOCK, : p1 : LOCK , : p1 : LOCK : LOCK , p1 : LOCK : LOCK p2 pn 2n Abstract States Solution: Use predicates only where needed

  47. Main Questions Example ( ) { 1: do{ lock(); old = new; q = q->next; 2: if (q != NULL){ 3: q->data = new; unlock(); new ++; } 4:}while(new != old); 5: unlock (); } 1 : LOCK Q. How to find good predicates ? Where to track each predicate? 2 LOCK , new==old SAFE 3 LOCK , new==old 4 4 LOCK , new=old : LOCK , : new = old 1 5 5 Refinement : LOCK, : new == old 4 4 4 1 : LOCK , new==old 2 3 Predicates:LOCK, new==old

  48. Counterexample Traces lock1= 1 old1 = new0 q1 = q0->next assume(q1 != NULL) (q1 ->data)1 = new0 lock2 = 0 new1 = new0 +1 assume(new1=old1) assert(lock2=1) lock1= 1 Æ old1 = new0Æ q1 = q0->next Æ q1 != NULL Æ (q1 ->data)1 = new0 Æ lock2 = 0 Æ new1 = new0 +1 Æ new1=old1 lock() old = new q=q->next [q!=NULL] q->data = new unlock() new++ [new==old] unlock() Trace Feasibility Formula Trace SSA Trace Thm: Trace is feasible, TF is satisfiable

  49. Proof of Unsatisfiability lock1= 1 Æ old1 = new0Æ q1 = q0->next Æ q1 != NULL Æ (q1 ->data)1 = new0 Æ lock2 = 0 Æ new1 = new0 +1 Æ new1=old1 old1= new0 new1= new0 + 1 new1 = old1 new1= old1+1 ; Proof of Unsatisfiability Predicates: old=new, new=new+1, new=old Trace Feasibility Formula Add: old=new [HenzingerJhalaM.Sutre02]

  50. Decision Procedure Must Produce Proofs Sat asgn Decision Procedure yes Proof  no Boolean SAT Proofs important in other applications as well: e.g., Proof carrying code [Necula97,HenzingerJhalaM.NeculaSutreWeimer02]

More Related