1 / 13

Variability of the Cosmic-Ray Ionization Rate in Diffuse Molecular Clouds

Variability of the Cosmic-Ray Ionization Rate in Diffuse Molecular Clouds. Nick Indriolo 1 , Thomas R. Geballe 2 , Takeshi Oka 3 , & Benjamin J. McCall 1. 1 – University of Illinois at Urbana-Champaign 2 – Gemini Observatory 3 – University of Chicago. Motivations.

sherri
Download Presentation

Variability of the Cosmic-Ray Ionization Rate in Diffuse Molecular Clouds

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Variability of the Cosmic-Ray Ionization Rate in Diffuse Molecular Clouds Nick Indriolo1, Thomas R. Geballe2, Takeshi Oka3, & Benjamin J. McCall1 1 – University of Illinois at Urbana-Champaign 2 – Gemini Observatory 3 – University of Chicago International Symposium on Molecular Spectroscopy

  2. Motivations • The cosmic-ray ionization rate (ζ) is an important parameter in cloud modeling • The cosmic-ray flux is typically assumed to be uniform in the Galaxy • Inferred values of ζ range over a few orders of magnitude (10-18-10-15 s-1) • What does this imply about the acceleration sources of cosmic rays?

  3. Supernova Remnants OB Associations Accelerators

  4. Background • Formation • CR + H2→ CR + H2+ + e- • H2+ + H2→ H3+ + H • Destruction • H3+ + e-→ H2 + H or 3H • Assume steady state

  5. Observations • Select various diffuse molecular cloud sight lines • Search for R(1,0) and R(1,1)u lines of H3+ near 3.67 μm • CGS4 on UKIRT • 34 sight lines to date (19 detections, 15 non-detections)

  6. R(1,1)u R(1,0) Data Reduction

  7. Ionization Rate vs. Hydrogen Column R=-0.14 Indriolo, N., Geballe, T. R., Oka, T., & McCall, B. J. 2007, ApJ, 671, 1736 McCall, B. J., Geballe, T. R., Hinkle, K. H., & Oka, T. 1998, Science, 279, 1910 McCall, B. J., et al. 2002, ApJ, 567, 391

  8. Well Constrained Upper Limits S/N ~ 400 S/N ~ 700 ζ Oph: ζ2 < 1.6×10-16 s-1 ο Sco: ζ2 < 1.2×10-16 s-1

  9. Ionization Rate and Galactic Coordinates southern sky AKARI 9 μm all-sky survey (JAXA/ESA)

  10. Small Scale Variations • Sight lines HD 168625 and HD 168607 are separated by 1’ on the sky. • At a distance of 1400 pc, this corresponds to 0.4 pc separation. • Both sight lines show 2 cloud components and have comparable ionization rates. HD 168625: ζ2=2.4×10-16±1.3×10-16 s-1 HD 168607: ζ2=1.3×10-16±0.7×10-16 s-1

  11. Conclusions • No conclusive correlation between the ionization rate and column density in diffuse molecular clouds • H3+ detections are more likely at lower Galactic latitudes • The ionization rate may be higher in the Galactic plane where the acceleration sources (SNR, OB associations) are more highly concentrated

  12. Future Work • Data from more diffuse clouds sight lines are currently being processed • Search for H3+ and compute the ionization rate near a cosmic-ray acceleration source • 2 nights with NIRSPEC on Keck and 2 nights with IRCS on Subaru to observe sight lines that probe molecular material near the SNR IC 443

  13. Acknowledgments

More Related