320 likes | 446 Views
CS220 Programming Principles. 프로그래밍의 이해 2002 가을학기 Class 16: Variations on Evaluator 한 태숙. Syntactic Analysis. Syntax analysis is interleaved with execution. Source of Inefficiency - Syntax is analyzed many times Ex: (define (factorial n) (if (= n 1) 1
E N D
CS220Programming Principles 프로그래밍의 이해 2002 가을학기 Class 16: Variations on Evaluator 한 태숙
Syntactic Analysis • Syntax analysis is interleaved with execution. • Source of Inefficiency - Syntax is analyzed many times Ex: (define (factorial n) (if (= n 1) 1 (* factorial (- n 1))) (factorial 4) • case analysis in eval, extracting operators........
Redesign the Evaluator • Split eval - takes an exp and an env • analyze - takes only exp, and produce a new proc • execute - takes an env and evaluate • We essentially curry the eval procedure to separate these two notion • the analyze procedures creates an execution object, which is a procedure that can be used to complete an evaluation by applying it to an environment. • (lambda (exp env) ...) • (lambda (env) (lambda (exp) .....)
Analyze ; Evaluation consists of (1) analysis, ; followed by (2) execution in an environment (define (eval exp env) ((analyze exp) env)) ; Analyze returns (lambda (env) .....) (define (analyze exp) (cond ((self-evaluating? exp) (analyze-self-evaluating exp)) ((quoted? exp) (analyze-quoted exp)) ((variable? exp) (analyze-variable exp)) ((assignment? exp) (analyze-assignment exp)) ((definition? exp) (analyze-definition exp)) ((if? exp) (analyze-if exp))
((lambda? exp) (analyze-lambda exp)) ((begin? exp) (analyze-sequence (begin-actions exp))) ((cond? exp) (analyze (cond->if exp))) ((application? exp) (analyze-application exp)) (else (error "Unknown expression type -- ANALYZE" exp))))
Analysis Procedures (define (anayze-self-evluating exp) (lambda (env) exp)) (define (analyze-quoted exp) (let ((qval (text-of-quotation exp))) (lambda (env) qval))) ; variable lookup - in executiontime (define (analyze-variable exp) (lambda (env) (lookup-variable-value exp env)))
;actual assignment is done in execution time ;but assignment value is analyzed once (define analyze-assignment exp) (let ((var (assignment-variable exp)) (vproc (analyze (assignment-value exp)))) (lambda (env) (set-variable-value! var (vproc env) env) ’ok))) (define (analyze-definition exp) (let ((var (definition-variable exp)) (vproc (analyze (definition-value exp)))) (lambda (env) (define-variable! var (vproc env) env) ’ok)))
; if expression (define (analyze-if exp) (let ((ppro (analyze (if-predicate exp))) (cpro (analyze (if-condition exp))) (apro (analyze (if-alternative exp)))) (lambda (env) (if (true? (pproc env)) (cproc env) (aproc env))))) ; alayzing body once, applied many times (define (analyze-lambda exp) (let ((vars (lambda-parameter exp)) (bproc (anlyze-sequence (lambda-body exp)))) (lambda (env) (make-procedure vars bproc env))))
;anlyze each exp in sequence ; combine generated procedure in seq ; execute the procedures in sequence (define (analyze-sequence exps) (define (sequentially proc1 proc2) (lambda (env) (proc1 env) (proc2 env))) (define (loop first-proc rest-procs) (if (null? rest-procs) first-proc (loop (sequentially first-proc (car rest-procs)) (cdr rest-procs)))) (let ((procs (map analyze exps))) (if (null? procs) (error “Empty sequence--ANALYZE”)) (loop (car procs) (cdr procs))))
;analyze the operator and operands ; and construct an execution procedure that ; calls the operator execution procedure and ; the operand execution procedures (define (analyze-application exp) (let ((fproc (analyze (operator exp))) (aprocs (map analyze (operands exp)))) (lambda (env) (execute-application (fproc env) (map (lambda (aproc) (apoc env)) aproc)))))
(define (execute-application proc args) (cond ((primitive-procedure? proc) (apply-primitive-procedure proc args)) ((compound-procedure? proc) ((procedure-body proc) (extend-environment (procedure-parameter proc) args (procedure-environment proc)))) (else (error “Unknown procdure type -EXECUTE” proc))))
Drill 1 • Draw the execution object used in ((analyze ’y) t-g-e):
Drill 2 • Draw the execution object used in ((analyze ’(if #t 1 2)) t-g-e):
Lazy Evaluation • means “Do not evaluate the arguments of a procedure until you have to” • Normal Order ( cf. applicative order) Ex: (define (try a b) (if (= a 0) 1 b)) (try 0 (/ 1 0)) (define (unless condition usual-v exception-v) (if condition exception-v usual-v )) (unless (= b 0) (/ a b) (begin (display ”exception”) 0))
Lazy vs Eager : example (define (pick-one sym x y z) (cond ((eq? sym ’x) x) ((eq? sym ’y) y) ((eq? sym ’z) z) (else ’who-cares))) ;;;L-eval input: (pick-one (begin (newline) ’y) (display ’did-x) (display ’did-y) (display ’did-z)) ; TWO NEWLINES did-y ;***displayed symbol ;;;L-eval value: #[undefined-value] ;value from DISPLAY
Exercise 4-25 • What happen if we attempt to evaluate (factorial 5)in an applicative order? Will our definitions work in a normal-order language? (define (factorial n) (unless (= n 1) (* n (factorial (- n 1))) 1)) (define (unless condition usual-v exception-v) (if condition exception-v usual-v ))
Evaluate a LAZY application • To change our language, we will modify the evaluator so that primitive procedures still evaluate all arguments before application, but compound procedures will delay the evaluation of each argument until needed • Delayed arguments will be transformed into objects called thunks. • The process of evaluating the expression in a thunk is called forcing
Modifying the evaluator • Modify eval and apply ; application? of eval ((application? exp) (apply (actual-value (operator exp) env) (operands exp) env)) ; getting the value (define (actual-value exp env) (force-it (eval exp env)))
Modifying apply ;delay the arguments (cf. primitive operator) (define (apply procedure arguments env) (cond ((primitive-procedure? procedure) (apply-primitive-procedure procedure (list-of-arg-values arguments env))) ; changed ((compound-procedure? procedure) (eval-sequence (procedure-body procdure) (extend-environment (procedure-parameters procedure) (list-of-delayed-args arguments env) ;changed (procedure-environment procedure)))) (else (error “Unknown procdure type--APPLY” procedure))))
Only differences are: (define (list-of-arg-values exps env) (if (no-operands? exp) ’() (cons (actual-value (first-operand exps) env) (list-of-arg-values (rest-operands exps) env)))) (define (list-of-delayed-args exps env) (if (no-operands? exps) ’() (cons (delay-it (first-operand exps) env) (list-of-delayed-args (rest-operands exps) env))))
If needs predicate evaluated (define (eval-if exp env) (if (true? (actual-value (if-predicate exp) env)) (eval (if-consequence exp) env) (eval (if-alternative exp) env)))
Representing thunks (define (force-it obj) (if (thunk? obj) (actual-value (thunk-exp obj) (thunk-env obj)) obj)) (define (delay-it exp env) (list ’thunk exp env)) (define (thunk? obj) (tagged-list? obj ’thunk)) (define (thunk-exp thunk) (cadr thunk)) (define (thunk-env thunk) (caddr thunk)) (define (evaluated-thunk? obj) (tagged-list? obj ‘’evaluated-thunk)) (define (thunk-value evaluated-thunk) (cadr evaluated-thunk))
Call By Need • Once a value has been forced, remember it and don’t force again: MEMOIZATION as for streams. (define (force-it obj) (cond((thunk? obj) (let ((result (actual-value (thunk-exp obj) (thunk-env obj)))) (set-car! obj ’evaluated-thunk) (set-car! (cdr obj) result) ;replace exp (set-cdr! (cdr obj) ’()) ;forget env result)) ((evaluated-thunk? obj) (thunk-value obj)) (else obj)))
Driver ; Driver-Loop needs actual-value (define input-prompt “;;; L-Eval input:”) (define output-prompt “;;; L-Eval Value:”) (define (driver-loop) (prompt-for-input input-prompt) (let ((input (read))) (let ((output (actual-value input the-global-environment))) (announce-output output-prompt) (user-print output))) (driver-loop))
Sample Run (define the-global-environment (set-environment)) (driver-loop) ;;; L-Eval input: (define (try a b) (if (= a 0) 1 b)) ;;; L-Eval value: ok ;;; L-Eval input: (try 0 (/ 1 0)) ;;; L-Eval value 1
Streams as Lazy Lists • In Lazy evaluation, List itself is a stream. It is even lazier than stream. • Implement cons with non-strict primitive (define (cons x y) (lambda (m) (m x y))) (define (car z) (z (lambda (p q) p))) (define (cdr z) (z (lambda (p q) q)))
Examples (define (list-ref items n) (if (= n 0) (car items) (list-ref (cdr items)(- n 1))))) (define ones (cons 1 ones)) (define integer (cons 1 (add-lists ones integers) (define add-lists list1 list2) (cond ((null? list1) list2) ((null? list2) list1) (else (cons (+ (car list1) (car list2)) (add-lists (cdr list1)(cdr list2)))))) ;;; L-Eval input: (list-ref integers 17) ;;; L-Eval value 18
Solving Diff Equation - section 3.5.4 (define (integral integrand initial-value dt) (define int (cons initial-value (add-lists (scale-list integrand dt) int))) int) (define solve f y0 dt) (define y (integral dy y0 dt)) (define dy (map f y)) y) ;;; L-Eval input: (list-ref (solve (lambda (x) x) 1 0.001) 1000) ;;; L-Eval value; 2.716924
Changing to Infix Notation (define (operator app) (if (= 3 (length app)) (cadr app) (car app))) (define (operands app) (if (= 3 length app)) (list (car app) (caddr app)) (cdr app))) EX: (3 + 4) (- 10) cf: (+ 1 2 3 4) (max 1 2 3)
Dynamic Scope (define x 10) (define times-x (lambda (y) (* x y))) (define (mul x y) (times-x y)) (mul 3 4) ==> 12 ; dynamic scoping ==> 40 ; static scoping
Implementing Dynamic Scope ((application? exp) (apply (eval (operator exp) env) (list-of-values (operands exp) env) env)) ;; changed
(define (apply procedure arguments env) ;; changed (cond ((primitive-procedure? procedure) (apply-primitive-procedure procedure arguments)) ((compound-procedure? procedure) (eval-sequence (procedure-body procedure) (extend-environment (procedure-parameters procedure) arguments env))) ;; changed (else (error "Unknown procedure type -- APPLY" procedure))))