1 / 37

Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State)

Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State). Gavin W Morley, Physics Department, University of Warwick. Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State). Gavin W Morley, Physics Department, University of Warwick.

sonja
Download Presentation

Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State) Gavin W Morley, Physics Department, University of Warwick

  2. Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State) Gavin W Morley, Physics Department, University of Warwick

  3. Solid-State Hardware Overview • Electron and Nuclear Spins • Atomic dopants • Donors in silicon • NV- colour centres in diamond • Others (egSiC) • Quantum Dots • Gate-defined • Self-assembled • Coherent Superconducting Circuits • Quantum computing • Single microwave photons • Quantum annealing • Hybrids of these

  4. Solid-State Hardware Overview • Electron and Nuclear Spins • Atomic dopants • Donors in silicon • NV- colour centres in diamond • Others (egSiC) • Quantum Dots • Gate-defined • Self-assembled • Coherent Superconducting Circuits • Quantum computing • Single microwave photons • Quantum annealing • Hybrids of these

  5. Electron and Nuclear Spins

  6. Electron and Nuclear Spins - Magnetic resonance

  7. Pulsed Electron Spin Resonance at 110 – 336 GHz GW Morley, L-C Brunel & J van Tol, Rev SciInstrum79, 064703 (2008) J van Tol, L-C Brunel & R J Wylde, Rev SciInstrum76, 074101 (2005) [1] GW Morley et al., PRL 101 (2008) [2] S Takahashi et al., PRL 101 (2008) [3] DR McCamey et al., Worldwide patent WO/2009/155563 (2009) [4] DR McCamey et al., PRL 102 (2009) [5] S Takahashi et al., PRL 102 (2009) [6] DR McCamey et al., Science 330 (2010) [7] GW Morley et al., Nat Materials 9 (2010) [8] S Takahashi et al., Nature 476 (2011) [9] KY Choi et al., PRL 108, 067206 (2012) [10] CC Lo et al., PRL 110 (2013)

  8. 400 GHz Electron Spin Resonance

  9. Atomic Spins - Donors in silicon Reviews: DD Awschalom et al., Science 339, 1174 (2013) F. A. Zwanenburg et al., Rev. Mod. Phys. 85, 961 (2013) Image by Manuel Vögtli

  10. Atomic Spins - Spin coherence of donors in silicon Bulk ensemble samples: Nuclear T2 = 3 hours K Saeedi et al., Science 342, 830 (2013) Electron T2 > 1 second AM Tyryshkin et al., Nature Materials 11, 143 (2012)

  11. Atomic Spins - Readout of donor spins in silicon A Morello et al., Nature 467, 687 (2010) JJ Pla et al., Nature 489, 541 (2012) JJ Pla et al., Nature 496, 334 (2013) Nuclear T2 = 60 ms Electron T2 > 0.2 ms

  12. Atomic Spins - Atomic-scale fabrication in silicon JL O’Brien et al., PRB 64, 161401 (2001) SR Schofield et al., PRL 91, 136104 (2003) M Fuechsle et al., Nat Nano 7, 242 (2012) B Weber et al., Science 335, 64 (2012)

  13. Atomic Spins - Bismuth qubits in silicon T Sekiguchi et al., PRL 104, 137402 (2010) GW Morley et al., Nature Materials 9, 725 (2010) RE George et al., PRL 105, 067601 (2010) GW Morley et al., Nature Materials 12, 103 (2013) G Wolfowicz et al., Nature Nano 8, 561 (2013) Image by Manuel Vögtli

  14. Atomic Spins - Colour centres in Diamond Nitrogen-vacancy centre (NV-) J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)

  15. Atomic Spins - Coherence of NV- in Diamond Single spin at room temperature: Nuclear T2 > 1 second PC Maurer et al., Science 336, 1283 (2012) Electron T2 > 2 ms G Balasubramanian et al., Nature Materials 8, 383 (2009) Nitrogen-vacancy centre (NV-) J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)

  16. Atomic Spins - Magnetometry in Diamond 1 electron spin at 50 nm: MS Grinolds et al., Nat Phys 9, 215 (2013) NMR with (5 nm)3 volume: T Staudacher et al., Science 339, 561 (2013) HJ Mamin et al., Science 339, 557 (2013) Nanodiamond magnetometry: expect 290 nT Hz-1/2 ME Trusheim et al., Nano Lett 14, 32 (2013) Bulk ensemble magnetometry: expect 150 fT Hz-1/2 from 100 μm diamond VM Acosta et al., PRB 80, 115202 (2009)

  17. Atomic Spins - Nano-thermometry in Diamond Ambient thermometry: 5 mK Hz-1/2 in bulk, 130 mK Hz-1/2 in nanodiamonds G Kucsko et al., Nature 500, 54 (2013) P Neumann et al., Nano Lett 13, 2738 (2013) Nitrogen-vacancy centre (NV-) J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)

  18. Atomic Spins - Nano-electromechanical diamond Cantilever: S. Kolkowitz et al., Science 335, 1603 (2012) Phonons: K. C. Lee et al., Science 334, 1253 (2011) Nitrogen-vacancy centre (NV-) J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)

  19. Atomic Spins - Diamond gyroscope Projected sensitivity of 10−5 rad s−1 Hz−1/2: MP Ledbetter et al., PRA 86, 052116 (2012) Levitated crystals: Y Arita, M Mazilu & K Dholakia, Nat Commun 4, 2374 (2013) M. Scala et al., PRL 111, 180403 (2013)

  20. Atoms for storing light - Rare-earth-ion-doped crystals Entangled photon storage: C Clausen et al., Nature 469, 508 (2011) E Saglamyurek et al., Nature 469, 512 (2011)

  21. Spins in quantum dots - Gate-defined dots in GaAs Single qubit control and readout: FHL Koppens et al., Nature 442, 766 (2006) Electron spins, 200 µs coherence: H Bluhm et al., Nat Phys 7, 109 (2011)

  22. Spins in quantum dots - Gate-defined dots in SiGe Electron spin T1 > 2s CB Simmons et al., PRL 106, 156804 (2011) Electron spin T2* = 360 ns BM Maune et al., Nature 481, 344 (2012)

  23. Spins in quantum dots - Self-assembled dots in GaAs Single photon source: Sven Hoefling talk IJ Luxmoore et al., Sci Rep 3, 1239 (2013). MJ Conterio et al., APL 103, 162108 (2013). Debabrata Bhattacharyya, A. C. Bryce, John H. Marsh and Clivia M. Sotomayor-Torres, Glasgow

  24. Solid-State Hardware Overview • Electron and Nuclear Spins • Atomic dopants • Donors in silicon • NV- colour centres in diamond • Others (egSiC) • Quantum Dots • Gate-defined • Self-assembled • Coherent Superconducting Circuits • Quantum computing • Single microwave photons • Quantum annealing • Hybrids of these

  25. Coherent Superconducting Circuits C R L

  26. Coherent Superconducting Circuits C Energy R |excited> Φ |ground> MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004) RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008) J Clarke & FK Wilhelm, Nature 453, 1031 (2008) MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013) Flux, Φ L

  27. Coherent Superconducting Circuits - Design L Steffen et al., Nature 500, 319 (2013) - Aluminium (Tc = 1.2 K) at 20 mK, aluminium oxide insulator - “Circuit QED” allows single microwaves to be created, transported , amplified and detected MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004) RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008) Clarke & FK Wilhelm, Nature 453, 1031 (2008) MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013) Review:J

  28. Coherent Superconducting Circuits - Performance 1 qubit gate ~ 10 ns, 2 qubit gate ~ 100 ns MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004) RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008) J Clarke & FK Wilhelm, Nature 453, 1031 (2008) MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013) Review:J

  29. Coherent Superconducting Circuits - Nano-electromechanical Quantum drum: AD O'Connell et al., Nature 464, 697 (2010) MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004) RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008) J Clarke & FK Wilhelm, Nature 453, 1031 (2008) MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013) Review:J

  30. Coherent Superconducting Circuits - Applications for three qubits Entanglement: M Neeley et al., Nature 467, 570 (2010) L DiCarlo et al., Nature 467, 574 (2010) Quantum error correction: MD Reed et al., Nature 482, 382 (2012) Teleportation: L Steffen et al., Nature 500, 319 (2013) 5 qubits with >99% gate fidelity: R Barends et al., arXiv:1402.4848

  31. Coherent Superconducting Circuits - Quantum annealing is not QC Paul Warburton talk MW Johnson et al., Nature 473, 194 (2011) NG Dickson et al., Nat Commun 4, 1903 (2013) Image courtesy of D-Wave Systems Inc.

  32. Coherent Superconducting Circuits - Nanowire current standard? Quantum phase slips JE Mooij & YV Nazarov, Nat Phys 2, 169 (2006) CH Webster et al., Phys Rev B 87, 144510 (2013)

  33. Superconducting technologies? - Brain scans again MEG with an array of 300 SQUIDs operated as classical magnetometers Also single photon detectors: - F Marsili et al., Nat Photonics 7, 210 (2013) - CM Natarajan, MG Tanner & RH Hadfield, Superconductor Science & Technology 25, 063001 (2012) - J Kuur et al., JLTP 167, 561 (2012)

  34. Solid-State Hardware Overview • Electron and Nuclear Spins • Atomic dopants • Donors in silicon • NV- colour centres in diamond • Others (egSiC) • Quantum Dots • Gate-defined • Self-assembled • Coherent Superconducting Circuits • Quantum computing • Single microwave photons • Quantum annealing • Hybrids of these

  35. Spin-superconductor hybrids - Spin ensemble memory DI Schuster et al., PRL 105, 140501 (2010) Y Kubo et al., PRL 105, 140502 (2010) H Wu et al., PRL 105, 140503 (2010)

  36. Solid-State Hardware • Electron and Nuclear Spins • Atomic dopants • Donors in silicon • NV- colour centres in diamond • Others (egSiC) • Quantum Dots • Gate-defined • Self-assembled • Coherent Superconducting Circuits • Quantum computing • Single microwave photons • Quantum annealing • Hybrids of these

More Related