1 / 23

6 .1 Rational Expressions

6 .1 Rational Expressions. Rational Expression – an expression in which a polynomial is divided by another nonzero polynomial. Examples of rational expressions x 2

tablita-lee
Download Presentation

6 .1 Rational Expressions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6.1 Rational Expressions Rational Expression – an expression in which a polynomial is divided by another nonzero polynomial. • Examples of rational expressions • x 2 • x 2x – 5 x – 5 • Domain = {x | x  0} Domain = {x | x  5/2} Domain = {x | x  5}

  2. Graph of a Rational Function • y = 1 • x • x y • -2 -1/2 • -1 -1 • -1/2 -2 • 0 Undefined • ½ 2 • 1 • ½ The graph does not cross the x = 0 line since x the graph is undefined there.. The line x = 0 is called a vertical asymptote. An Application: Modeling a train track curve.

  3. Multiplication and Division of Rational Expressions A • C = A 9x = 3 B • C B 3x2 x 5y – 10 = 5 (y – 2) = 5 = 1 10y - 20 10 (y – 2) 10 2 2z2 – 3z – 9 = (2z + 3) (z – 3) = 2z + 3 z2 + 2z – 15 (z + 5) (z – 3) z + 5 A2 – B2 = (A + B)(A – B) = (A – B) A + B (A + B)

  4. Negation/Multiplying by –1 -y – 2 4y + 8 y + 2 4y + 8 -y - 2 -4y - 8 - = OR

  5. Examples x3 – x x + 1 x – 1 x x2 – 25 x2 –10x + 25 x2 + 5x + 4 2x2 + 8x •  x2 – 25 2x2 + 8x x2 + 5x + 4 x2 –10x + 25 • (x3 – x) (x + 1) x(x – 1) = = (x + 5) (x – 5) • 2x(x + 4) (x + 4)(x + 1) • (x – 5) (x – 5) = = x (x2 – 1)(x + 1) x(x – 1) 2x (x + 5) (x + 1)(x – 5) = x (x + 1) (x – 1)(x + 1) x(x – 1) = (x + 1)(x + 1) = (x + 1)2 =

  6. (x + 1) (x –7) (x + 1) (x – 1) 1 x2 + x - 6 x – 2 3 • 1 (x + 3) (x – 2) x – 2 3 (x – 7) (x – 1) • (x + 3) 3 Check Your Understanding Simplify: x2 –6x –7 x2 -1 Simplify: 1 3 x - 2 x2 + x - 6 

  7. 6.2 Addition of Rational Expressions Adding rational expressions is like adding fractions With LIKE denominators: 1 + 2 = 3 8 8 8 x + 3x - 1 = 4x - 1 x + 2 x + 2 x + 2 x + 2 (2 + x) (2 + x) 3x2 + 4x - 4 3x2 + 4x -4 (3x2 + 4x – 4) (3x -2)(x + 2) = = = 1 (3x – 2)

  8. Adding with UN-Like Denominators • + 2 • x2 – 9 x + 3 • 1 + 2 • (x + 3)(x – 3) (x + 3) • 1 + 2 (x – 3) • (x + 3)(x – 3) (x + 3)(x – 3) • 1 + 2(x – 3) 1 + 2x – 6 2x - 5 • (x + 3) (x – 3) (x + 3) (x – 3) (x + 3) (x – 3) • + 1 • 8 • (3) (2) + 1 • 8 • + 1 • 8 • 7 • 8 = =

  9. x – 1 (x + 1)(x –1) = = 1 (x + 1) Subtraction of Rational Expressions To subtract rational expressions: Step 1: Get a Common Denominator Step 2: Combine Fractions DISTRIBUTING the ‘negative sign’ BE CAREFUL!! 2x - x + 1 x2 – 1 x2 - 1 2x – (x + 1) x2 -1 2x – x - 1 x2 -1 = =

  10. b b-1 2(b – 2) b-2 - b -b+1 2(b – 2) b-2 + b 2(b – 2) 2(-b+1) 2(b – 2) + -1 2 -1(b – 2) 2(b – 2) b –2b+2 2(b – 2) -b + 2 2(b – 2) = = = Check Your Understanding Simplify: b b-1 2b - 4 b-2 -

  11. x + 2 3x - 1 x x + 4 6.3 Complex Fractions A complex fraction is a rational expression that contains fractions in its numerator, denominator, or both. Examples: 1 5 4 7 x x2 – 16 1 x - 4 1 x 2 x2 + 3 x 1 x2 - 7/20

  12. 6.4 Division by a Monomial 3x2 + x 5x3 – 15x2 x 15x 4x2 + 8x – 12 5x2y + 10xy2 4x2 5xy 15A2 – 8A2 + 12 12A5 – 8A2 + 12 4A 4A

  13. Begin by writing the divisor and dividend in descending powers of x. Then, figure out how many times 3x divides into 6x3. Multiply. Divide: 6x3/3x = 2x2. 2x2 3x – 2 6x3 – x2 – 5x + 4 Multiply: 2x2(3x – 2) = 6x3 – 4x2. 6x3 – 4x2 Subtract 6x3 – 4x2 from 6x3 – x2 and bring down –5x. -1 3x2 – 5x Now, divide 3x2 by 3x to obtain x, multiply then subtract. Subtract -3x + 2 from -3x + 4, leaving a remainder of 2. 2 Multiply. Divide: 3x2/3x = x. 2x2 + x 3x – 2 6x3 – x2 – 5x + 4 -3x +2 Multiply: x(3x – 2) = 3x2 – 2x. 6x3 – 4x2 Subtract 3x2 – 2x from 3x2 – 5x and bring down 4. 3x2 – 5x Answer: 2x2 + x – 1 + 2 3x - 2 3x2 – 2x -3x + 4 Example: Divide 4 – 5x – x2 + 6x3 by 3x – 2. Polynomial Long Division

  14. More Long Division 3x -11 3x3 + 9x2 + 9x -11x2 - 5x - 3 -11x2 - 33x - 33 28x+30

  15. (2x – 1) (x - 2) (x + 1) 6.5-6.6 Rational Equations 3x = 3 x + 1 = 3 6 = x 2x – 1 x – 2 x - 2 x + 1 3x = 3(2x – 1) 3x = 6x – 3 -3x = -3 x = 1 x + 1 = 3 x = 2 6 = x (x + 1) 6 = x2 + x x2 + x – 6 = 0 (x + 3 ) (x - 2 ) = 0 x = -3 or x = 2 Careful! – What do You notice about the answer?

  16. (12x) 6 (x + 1) -3(x – 1) = 4x 6x + 6 –3x + 3 = 4x 3x + 9 = 4x -3x -3x 9 = x = Rational Equations Cont… To solve a rational equation: Step 1: Factor all polynomials Step 2: Find the common denominator Step 3: Multiply all terms by the common denominator Step 4: Solve x + 1 - x – 1 = 1 2x 4x 3

  17. (4x2) (x + 2)(x – 2) 4x + 4 = 3x2 3x2 - 4x - 4 = 0 (3x + 2) (x – 2) = 0 3x + 2 = 0 or x – 2 = 0 3x = -2 or x = 2 x = -2/3 or x = 2 3(x + 2) + 5(x – 2) = 12 3x + 6 + 5x – 10 = 12 8x – 4 = 12 + 4 + 4 8x = 16 x = 2 Other Rational Equation Examples 3 + 5 = 12 x – 2 x + 2 x2 - 4 1 + 1 = 3 x x2 4 3 + 5 = 12 x – 2 x + 2 (x + 2) (x – 2)

  18. Solve for p: • = 1 + 1 • F p q 1 x - 1 2(x – 3) x(x – 2) 3 x(x – 1)(x + 1) Check Your Understanding Simplify: x 1 x2 – 1 x2 – 1 1 3 x – 2 x 1 1 2 x(x – 1) x2 – 1 x(x + 1) Solve 6 1 x 2 3 2 2x – 1 x + 1 2 3 x x – 1 x + 2 x2 + x - 2 4 + - = 1 = 5 - + = + - -1/4 Try this one:

  19. 6.7 Proportions & Variation • Proportion equality of 2 ratios. Proportions are used to solve problems in everyday life. • If someone earns $100 per day, then how many dollars can the • person earn in 5 days? • 100 x (x)(1) = (100)(5) • 1 5 x = 500 • 2. If a car goes 210 miles on 10 gallons of gas, the car can go 420 miles on X gallons • 210 420 (210)(x) = (420)(10) • 10 x (210)(x) = 4200 • x = 4200 / 210 = 20 gallons • If a person walks a mile in 16 min., that person can walk a half mile in x min. • 16 x (x)(1) = ½(16) • 1 ½ x = 8 minutes = = =

  20. personheight treeheight personshadow treeshadow x 6ft 2.5 100 6 x = 2.5x = (100)(6) 2.5x = 600 2.5 2.5 x = 240 feet 100 ft 2 ½ ft The Shadow Problem Juan is 6 feet tall, but his shadow is only 2 ½ feet long. There is a tree across the street with a shadow of 100 feet. The sun hits the tree and Juan at the same angle to make the shadows. How tall is the tree?

  21. y = kx y is directly proportional to x. y varies directly with x k is the constant of proportionality Example: y = 9x (9 is the constant of proportionality) Let y = Your pay Let x – Number of Hours worked Your pay is directly proportional to the number of hours worked. 7.6 Direct Variation Example1: Salary (L) varies directly as the number of hours worked (H). Write an equation that expresses this relationship. Salary = k(Hours) L = kH Example 2: Aaron earns $200 after working 15 hours. Find the constant of proportionality using your equation in example1.. 200 = k(15) So, k = 200/15 = 13.33

  22. Inverse Variation y = k y is inversely proportional to x x y varies inversely as x Example: y varies inversely with x. If y = 5 when x = 4, find the constant of proportionality (k) 5 = k So, k = 20 4

  23. Direct Variation with Power y = kxn y is directly proportional to the nth power of x Example: Distance varies directly as the square of the time (t) Distance = kt2 D = kt2 Joint Variation y = kxp • y varies jointly as x and p

More Related