570 likes | 711 Views
Siggraph ’ 06 Paper Reading Seminar: Meshes Section. Chen Zhonggui 2006.5.29. Spectral Surface Quadrangulation. Shen Dong * Peer-Timo Bremer * Michael Garland * Valerio Pascucci † John C. Hart * * University of Illinois at Urbana-Champaign † Lawrence Livermore National Laboratory.
E N D
Siggraph’06 Paper Reading Seminar: Meshes Section Chen Zhonggui 2006.5.29
Spectral Surface Quadrangulation Shen Dong* Peer-Timo Bremer* Michael Garland* Valerio Pascucci† John C. Hart* *University of Illinois at Urbana-Champaign †Lawrence Livermore National Laboratory
Morse-Smale Complex • Connecting the saddles and extrema via gradient flow quadrangulates the surface. maximum minimum saddle
Laplacian Eigenfunction • Discrete Laplacian operator • Rewriting in matrix form
Properties of Laplacian Eigenfunctions • Minima and maxima are interleaved in such a way that high valence nodes are extremely rare. • Multisaddles almost never arise, thus practically guaranteeing that extraordinary points can only occur at extrema. • The number of nodal domains of the eigenfunction with eigenvalue is at most k.
Parameterization • Convex combination method • Nodes of the complex are always constrained to lie at the corners of D
Adjusting Patch Boundaries IterativeRelaxation • Adjusting patch boundaries
Iterative Relaxation • Relocating Nodes of the Complex
Conclusions • Less extraordinary points. • “feature sensitive” eigenfunctions?
Modified Subdivision Surfaces with continuous curvature Adi Levin Cadent Ltd.
Catmull-Clark Surface Step1. Linear subdivision Step2. Weighted averaging Averaging mask for regular vertex
Catmull-Clark Surface • continuous on the regular quad regions. • continuous at extraordinary vertices.
Surface Blending around Extraordinary Vertices • The modified surface :
Characteristic Map V One-ring neighboring vertices of extraordinary vertex V M: local subdivision matrix
Characteristic Map • The parametric coordinates are : the two sub-dominant eigenvectors of local subdivision matrix M.
Computing Polynomial p(u,v) • For valences n > 4 we use cubic polynomials, and in case n = 3, we use quadratics. • Using the (u,v) parameter values at the points, we calculate the coefficients of p(u,v) by a least-squares fit.
Surface Blending • The modified surface • Blending weight function
Conclusions • Can be used to modify the limit surface of other subdivision schemes. • The increased area of influence and the violation of the convex-hull property.
Edge Subdivision Schemes and The Construction of Smooth Vector Fields Ke Wang WeiWei Yiying Tong Mathieu Desbrun Peter Schröher Caltech
Discrete Exterior Calculus http://ddg.cs.columbia.edu/
Discrete Differential Forms Constructing higher regularity bases for discretedifferential forms Subdivision Process bases for discretedifferential 0-forms Loop[87] Scheme bases for discretedifferential 2-forms Half-box splines bases for discretedifferential 1-forms New scheme
Delaunay Triangulations Streaming Computation of Martin IsenburgUC Berkeley Yuanxin LiuUNC Chapel Hill Jonathan ShewchukUC Berkeley Jack SnoeyinkUNC Chapel Hill
Algorithms for large data sets • Divide-and-conquer algorithms • Cut a problem into small subproblems that can be solved independently • Cache-efficient algorithms • Cooperate with the hardware’s memory hierarchy • External memory algorithms • Control over where, when, and how data structures are stored on disk • Streaming algorithms • Sequentially read a stream of data and retain only a small portion of the information in memory.
Our Approach • spatialfinalization !!! • enhance inputwith tags thatsay: “there are no more points in this area”
Streaming Delaunay Pipeline enhances points withspatial finalization uses spatial finalizationto certify triangles as final
Spatial Finalization of Points compute bounding box
4 5 4 9 5 8 3 6 5 6 1 6 1 7 4 7 2 2 3 7 1 9 7 4 5 1 7 7 7 5 8 7 8 9 2 1 7 7 8 7 3 1 7 8 7 6 8 7 7 4 8 8 9 7 9 8 2 6 9 6 5 8 2 Spatial Finalization of Points compute bounding box create finalization grid • count points • store sprinkles
5 4 9 8 6 1 6 7 4 7 3 7 9 7 7 5 8 7 8 9 2 7 7 8 7 3 7 8 7 6 8 7 7 4 8 8 9 7 9 8 2 6 9 6 5 8 2 Spatial Finalization of Points compute bounding box create finalization grid • count points • store sprinkles output finalized points • release chunks • add finalization tags
1 4 9 7 6 0 3 5 4 7 3 7 9 7 7 5 8 7 8 9 2 7 7 8 7 3 7 8 7 6 8 7 7 4 8 8 9 7 9 8 2 6 9 6 5 8 2 Spatial Finalization of Points compute bounding box create finalization grid • count points • store sprinkles output finalized points • release chunks • add finalization tags
0 4 9 2 6 1 0 5 4 5 3 6 9 7 7 5 8 7 8 9 2 7 7 8 7 3 7 8 7 6 8 7 7 4 8 8 9 7 9 8 2 6 9 6 5 8 2 Spatial Finalization of Points compute bounding box create finalization grid • count points • store sprinkles output finalized points • release chunks • add finalization tags
0 7 1 0 4 3 1 2 7 1 1 7 7 9 2 7 7 8 7 3 7 8 7 6 8 7 7 4 8 8 9 7 9 8 2 6 9 6 5 8 2 Spatial Finalization of Points compute bounding box create finalization grid • count points • store sprinkles output finalized points • release chunks • add finalization tags
0 2 1 0 4 1 6 3 2 5 1 7 6 4 5 8 6 7 4 8 8 8 7 9 8 2 6 9 6 5 8 2 Spatial Finalization of Points compute bounding box create finalization grid • count points • store sprinkles output finalized points • release chunks • add finalization tags
0 2 1 0 4 1 1 3 2 3 2 3 7 2 5 9 5 4 7 2 Spatial Finalization of Points compute bounding box create finalization grid • count points • store sprinkles output finalized points • release chunks • add finalization tags
0 2 1 0 4 Spatial Finalization of Points compute bounding box create finalization grid • count points • store sprinkles output finalized points • release chunks • add finalization tags