170 likes | 359 Views
X-ray Spectroscopy of Bright ULXs. Jon M. Miller (CfA) A. C. Fabian (IoA), M. C. Miller (UMd), G. Fabbiano (CfA). Disk Models. Focused Emission Models. Isotropic Emission Models. Photospheric Emission. Disk Emission. XMM-Newton: NGC 1313 X-1. Disk component: > 8 σ
E N D
X-ray Spectroscopy of Bright ULXs Jon M. Miller (CfA) A. C. Fabian (IoA), M. C. Miller (UMd), G. Fabbiano (CfA)
Disk Models jmmiller@cfa.harvard.edu
Focused Emission Models jmmiller@cfa.harvard.edu
Isotropic Emission Models Photospheric Emission Disk Emission jmmiller@cfa.harvard.edu
XMM-Newton: NGC 1313 X-1 • Disk component: > 8σ • L_X ~ 0.6-2.0 E+40 erg/s • hard:soft 3:1 • kT = 230 +/- 20 eV • Γ = 1.76 +/- 0.07 • Mass Scaling: • T ~ M^(-1/4) • kT ~ 1.0 keV for 10 Msun BHs • M ~ 4000 Msun • M = ηf2 [K/cos(i)]0.5(d/10kpc)/(8.85km) • M ~ 400 Msun • L_X / L_Edd • 110 Msun • ~1000 Msun BH @ L_X ~ 0.1*L_Edd ? jmmiller@cfa.harvard.edu
XMM-Newton: M81 X-9 • Disk component: 6σ • L_X ~ 1.0-1.4 E+40 erg/s • hard:soft 4:1 • kT = 260 +/- 30 eV • Γ = 1.73 +/- 0.08 • Mass Scaling: • T ~ M^(-1/4) • kT ~ 1.0 keV for 10 Msun BHs • M ~ 2000 Msun • M = ηf2 [K/cos(i)]0.5(d/10kpc)/(8.85km) • M ~ 330 Msun • L_X / L_Edd • 200 Msun • ~1000 Msun BH @ L_X ~ 0.1*L_Edd ? jmmiller@cfa.harvard.edu
NGC 1313 X-1: Radio and Optical DSS • X-1: radio/X-ray ~ 5*10-6 • (Colbert 1995) • beaming creates flat νFν spectra • cannot beam blackbody spectra • consistent w/ Galactic XRBs • (Fender & Kuulkers 2001) • X-1 and X-2 illuminate symmetric • X-ray photoionization nebulae (Pakull & Mirioni 2002) • No young clusters within 380 pc of X-1, few kpc of X-2 (Larsen 1999) jmmiller@cfa.harvard.edu
Pakull & Mirioni 2001 • M81X-9: • Radio and Optical Data • X-9: radio/X-ray ~ 2*10-6 • beaming creates flat νFν spectra • cannot beam blackbody spectra • consistent w/ Galactic XRBs • (Fender & Kuulkers 2001) • X-9 may illuminate nebula • (Pakull & Mirioni 2002) DSS jmmiller@cfa.harvard.edu
Photospheres and Hard Components • (1) L_mech ~ L_rad*(v/c) • (2) R_phot ~ R_Schw.*(c/v)^2 • (see King 2003, also Titarchuk et al. 2003) • soft from photsph: L_rad ~ L_phot~ L_soft • hard X-rays via shocks: L_hard ~ L_mech • if hard X-rays strong: L_hard ~ L_soft [L_rad] • (1) only holds if (v/c) ~ 1, R_phot ~ R_Schw jmmiller@cfa.harvard.edu
XTE J1550-564 at L_X > 10^39 erg/s Sobczak et al. 2000 jmmiller@cfa.harvard.edu
QPOs: Hard and Central Homan et al. 2001 XTE J1550-564 jmmiller@cfa.harvard.edu
Fe K Lines: Central, Tied to Hard X-rays Gilfanov 2000 Miller et al. 2002 XMM, RXTE: XTE J1650-500 Chandra: GX339-4 Miller et al. 2003 Zdziarski 1999 jmmiller@cfa.harvard.edu
The M82 ULX • Very high luminosity: • L_X > 5 E+40 erg/s • mHz QPOs are observed • (XMM & RXTE) • Broad Fe K emission line • The inner regions of the disk are likely seen clearly. • (Strohmayer & Mushotzky 2003) jmmiller@cfa.harvard.edu
M81 X-9 jmmiller@cfa.harvard.edu
100 ksec on NGC 1313 X-1 with Con-X jmmiller@cfa.harvard.edu
Summary & Conclusions • Many, if not most ULXs are probably 10 Msun BHs. • Some are likely 100-1000 Msun BHs. • In some of the brightest sources, cool thermal emission is required. • This is most plausibly tied to disks; when combined with multi-wavelength data the picture is strongly suggestive of IMBHs. • “Put the squeeze” on ULXs using techniques learned in study of Galactic BHs and AGN: Fe K lines, QPOs, power spectra, states. • Future sensitive observations of bright ULX sources with Chandra and XMM-Newton can reveal improved evidence for IMBHs, distinct types. • Radio, optical work is very promising. jmmiller@cfa.harvard.edu