1 / 35

Trigonometric Ratios

Trigonometric Ratios. The Trigonometric Functions we will be looking at. SINE. COSINE. TANGENT. The Trigonometric Functions. SIN E. COS INE. TAN GENT. SIN E. Prounounced “sign”. COS INE. Prounounced “co-sign”. TAN GENT. Prounounced “tan-gent”. hypotenuse. hypotenuse. opposite.

teddy
Download Presentation

Trigonometric Ratios

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Trigonometric Ratios

  2. The Trigonometric Functions we will be looking at SINE COSINE TANGENT

  3. The Trigonometric Functions SINE COSINE TANGENT

  4. SINE Prounounced “sign”

  5. COSINE Prounounced “co-sign”

  6. TANGENT Prounounced “tan-gent”

  7. hypotenuse hypotenuse opposite opposite A adjacent adjacent

  8. We can use Trigonometric Ratios to find missing sides A • Sine= sinA = • Cosine = cosA= • Tangent = tanA= C B Where A is the angle measurement

  9. The ratios can be remembered by thE saying • SOH CAH TOA • sinA = cosA = tanA = hypotenuse opposite A adjacent

  10. A • What is the sine ratio of A? • What is the cosine ratio of A? • What is the tangent ratio of A? 10 8 C B 6

  11. Find the sine, the cosine, and the tangent of angle A. Give a fraction and decimal answer (round to 4 places). 10.8 9 A 6

  12. Find the values of the three trigonometric functions of . ? Pythagorean Theorem: 5 4 (3)² + (4)² = c² 5 = c 3

  13. Find the sine, the cosine, and the tangent of angle A Give a fraction and decimal answer (round to 4 decimal places). B 24.5 8.2 A 23.1

  14. How can we use these ratios to find side lengths? A Ask yourself the following questions ~What angle measurement do I have? A ~From that angle what am I LOOKING FOR (adjacent, opposite or hypotenuse) OPPOSITE ~From the angle what do I HAVE? (adjacent, opposite or hypotenuse) HYPOTENUSE ~So which ratio should we use? SINE • What is the length of BC? 22º 16 C B

  15. How can we use these ratios to find side lengths? A • What is the length of BC? 22º Sin22 = 16 16Sin22 =x 5.99=x C B

  16. Find the length of ED. Which ratio should we use? Solve. Find the length of DF. Which ratio Should we use? Solve. D 65º E F 14

  17. Finding an angle.(Figuring out which ratio to use and getting to use the 2nd button and one of the trig buttons.)

  18. 17.2 9 2nd tan Ex. 1: Find . Round to four decimal places. 17.2 9 Make sure you are in degree mode (not radian).

  19. 7 23 2nd cos Ex. 2: Find . Round to three decimal places. 7 23 Make sure you are in degree mode (not radian).

  20. 200 400 2nd sin Ex. 3: Find . Round to three decimal places. 200 400 Make sure you are in degree mode (not radian).

  21. When we are trying to find a sidewe use sin, cos, or tan. When we are trying to find an angle we use sin-1, cos-1,ortan-1.

  22. Solve the problem:

  23. A ladder is leaning against a house so that the top of the ladder is 12 feet above the ground. The angle with the ground is 51º. How far is the base of the ladder from the house? 12 51º x

  24. An angle of elevationis the angle formed by a horizontal line and a line of sight to a point above the line. In the diagram, 1 is the angle of elevation from the tower T to the plane P. An angle of depressionis the angle formed by a horizontal line and a line of sight to a point below the line. 2 is the angle of depression from the plane to the tower.

  25. Since horizontal lines are parallel, 1 2 by the Alternate Interior Angles Theorem. Therefore the angle of elevation from one point is congruent to the angle of depression from the other point.

  26. The sun hits the top of a tree which creates a shadow 15 feet long. If the angle of elevation from the ground to the top of the tree is 42º, how tall is the tree? tan42= x x= 15tan42 42º 42º 15 x= 13.51 ft

  27. A person is 200 yards from a river. Rather than walk directly to the river, the person walks along a straight path to the river’s edge at a 60° angle. How far must the person walk to reach the river’s edge? cos60° x (cos60°) = 200 200 60° x x X = 400 yards

  28. Ex. A surveyor is standing 50 feet from the base of a large tree. The surveyor measures the angle of elevation to the top of the tree as 71.5°. How tall is the tree? tan 71.5° ? tan 71.5° 71.5° y = 50 (tan 71.5°) 50 y = 50 (2.98868)

  29. 1.5km 5° x Happy Landing A plane is flying at an altitude of 1.5km. The pilot wants to descend into an airport so that the path of the plane makes an angle of 5° with the ground. How far from the airport (horizontal distance) should the descent begin?

  30. River Width • A surveyor is measuring a river’s width. He uses a tree and a big rock that are on the edge of the river on opposite sides. After turning through an angle of 90° at the big rock, he walks 100 meters away to his tent. He finds the angle from his walking path to the tree on the opposite side to be 25°. What is the width of the river? • Draw a diagram to describe this situation. Label the variable(s)

  31. River Width We are looking at the “opposite” and the “adjacent” from the given angle, so we will use tangent Multiply by 100 on both sides

  32. Building Height A spire sits on top of the top floor of a building. From a point 500 ft. from the base of a building, the angle of elevation to the top floor of the building is 35o. The angle of elevation to the top of the spire is 38o. How tall is the spire? Construct the required triangles and label. 38o 35o 500 ft.

  33. Building Height Write an equation and solve. Total height (t) = building height (b) + spire height (s) Solve for the spire height. s t Total Height b 38o 35o 500 ft.

  34. Building Height Write an equation and solve. Building Height s t b 38o 35o 500 ft.

  35. Building Height Write an equation and solve. Total height (t) = building height (b) + spire height (s) s t b The height of the spire is approximately 41 feet. 38o 35o 500 ft.

More Related