1 / 54

第三章 混合模型的纵向数据分析

第三章 混合模型的纵向数据分析. 线性模型 分成数据的混合模型. 纵向数据( Longitudinal Data )的混合模型. 这里 是协方差矩阵,即 的元素不需要独立. 的选取. 常见的是和时间有关,如 中的元素服从时间序列模型,自回归模型,滑动平均模型等,并有周期。 例如模型. 对于 AR ( 1 ). AR ( 1 )简介. 令 其中 独立。 假设 则时间序列平稳且

teigra
Download Presentation

第三章 混合模型的纵向数据分析

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第三章 混合模型的纵向数据分析

  2. 线性模型 • 分成数据的混合模型

  3. 纵向数据(Longitudinal Data)的混合模型 • 这里 是协方差矩阵,即 的元素不需要独立

  4. 的选取 常见的是和时间有关,如 中的元素服从时间序列模型,自回归模型,滑动平均模型等,并有周期。 例如模型

  5. 对于AR(1)

  6. AR(1)简介 • 令 其中 独立。 • 假设 则时间序列平稳且 • 时间序列有单位根即 。

  7. AR(1)模型的数值特征 • 令 和 为给定t-1时刻前的条件期望和方差,则 • 因此

  8. 无条件期望方差 • 均值方差为 • 分布为

  9. 自相关系数 • 定义 • 协方差 • 相关系数 因为

  10. d阶自相关系数 • 协方差 • d阶自相关系数

  11. 对于ARMA(1,1)

  12. ARMA(1,1)简介 • 模型 其中 • 一般形式 其中

  13. 假设 • 其中 ,

  14. MA( ) • ARMA(1,1) 另一种形式为 • 自协方差函数 其中

  15. 方差 • 方差

  16. 自协方差函数

  17. 自相关系数

  18. 分层模型 • 第一层模型

  19. 第二层模型

  20. 混合模型

  21. 说明 • 截距项 • 组间(时间不变) • 组内(时变的) • 交互

  22. 4个组群,随机部分 记为 其中

  23. 随机部分方差

  24. 模型的矩阵形式1

  25. 矩阵形式2 这里

  26. 矩阵形式3

  27. 矩阵形式4

  28. 广义最小二乘(GLS)

  29. 两种估计算法 • 极大似然估计,同时估计 , 采用anova函数, 其中 为固定效应, 为随机效应,常被低估. • 限制的极大似然估计,先估计 然后采用GLS估计 ,采用函数lme, 更精确

  30. 程序

  31. 数据集描述(畸齿矫,orthodontics) Investigators at the University of North Carolina Dental School followed the growth of 27 children (16 males, 11 females) from age 8 until age 14. Every two years they measured the distance between the pituitary(脑垂体,脑下腺) and the pterygomaxillary fissure(翼上颌列)(单位mm), two points that are easily identified on x-ray exposures of the side of the head.

  32. 数据续 • distance a numeric vector of distances from the pituitary to the pterygomaxillary fissure (mm). These distances are measured on x-ray images of the skull. • age a numeric vector of ages of the subject (yr).

  33. Subject an ordered factor indicating the subject on which the measurement was made. The levels are labelled M01 to M16 for the males and F01 to F13 for the females. The ordering is by increasing average distance within sex. • Sex a factor with levels Male and Female

  34. 文献 • Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New York. (Appendix A.17) • Potthoff, R. F. and Roy, S. N. (1964), “A generalized multivariate analysis of variance model useful especially for growth curve problems”, Biometrika, 51, 313–326.

  35. 数据预处理 • plot(dd) • tab(dd,~Sex) • fit1<-lm(distance~age*Sex,dd) • summary(fit) • wald(fit,"Sex") • fit2<-lm(distance~age+Sex,dd) • summary(fit2) • fit3<-lm(distance~age/Sex,dd) • summary(fit3)

  36. 混合效应模型 • fit<-lme(distance~age*Sex,dd,random=~1+age|Subject,correlation=corAR1(form=~1|Subject)) • summary(fit) • intervals(fit)#区间估计 • getVarCov(fit)#得到G矩阵

  37. 去掉Sex主效应 • fit1<-lme(distance~age/Sex,dd,random=~1+age|Subject,correlation=corAR1(form=~1|Subject)) • summary(fit1) • intervals(fit1)#区间估计 • getVarCov(fit1)#G矩阵

  38. 去掉异常数据 • fit.dropM09<-update(fit,subset=Subject!="M09") • summary(fit.dropM09) • intervals(fit.dropM09)

  39. 去掉异常数据2 • fit1.dropM09<-update(fit1,subset=Subject!="M09") • summary(fit1.dropM09) • intervals(fit1.dropM09)

  40. Wald检验 • L=rbind("Male at 14"=c(1,14,0,0),"Female at 14"=c(1,14,1,14)) • wald(fit,L) • L1=rbind("Male at 14"=c(1,14,0),"Female at 14"=c(1,14,14)) • wald(fit1,L1)

  41. Wald检验2 • L.gap<-rbind("Gap at 12"=c(0,0,1,12)) • wald(fit,L.gap) • wald(fit,"Sex") • L1.gap<-rbind("Gap at 12"=c(0,0,12)) • wald(fit1,L1.gap) • wald(fit1,"Sex")

  42. 一些模型总结 • 令X为组内因子(时变),W为组间因子(时间不变)

  43. 一因子混合模型 • 第一层 • 第二层 • 合并

  44. 条件方差和无条件方差 • 条件方差 • 无条件方差

  45. 的估计, 的加权平均 • 定义 • 估计值为

  46. 一般结构 • 条件方差

  47. 估计的期望

  48. 方差

  49. EBLUPs(Empirical Best Linear Unbiased Predictor) • 最佳线性预测 BLUP

More Related