1 / 14

Double-Angle and Half-Angle Identities

1 2. = 2 – Replace with exact values. = – Simplify. 3 2. 3 2. Double-Angle and Half-Angle Identities. ALGEBRA 2 LESSON 14-7. Use a double-angle identity to find the exact value of sin 600°. sin 600° = sin 2(300°) Rewrite 600 as 2(300).

tejano
Download Presentation

Double-Angle and Half-Angle Identities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 2 = 2 – Replace with exact values. = – Simplify. 3 2 3 2 Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 Use a double-angle identity to find the exact value of sin 600°. sin 600° = sin 2(300°) Rewrite 600 as 2(300). = 2 sin 300° cos 300° Use a sine double-angle identity. 14-7

  2. sin 2 (1 – sin2 ) sin 2 (1 – sin2 ) = 2 tan . 2 sin • cos cos2 = double angle and Pythagorean identities 2 sin cos = Simplify. = 2 tan Tangent Identity Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 Verify the identity = 2 tan . 14-7

  3. 150° 2 150° 2 sin 75° = sin Rewrite 75° as . = Use the principal square root, since sin 75° is positive. (1 – cos150°) 2 = Substitute the exact value for cos 150°. 2 + 3 2 2 + 3 4 – 1 – 2 = Simplify. 3 2 = Simplify. Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 Use the half-angle identities to find each exact value. a. sin 75° 14-7

  4. 135° 2 135° 2 cos 67.5° = cos Rewrite 65.7° as . = Use the principal square root, since sin 75° is positive. (1 + cos 135°) 2 = Substitute the exact value for cos 135°. 2 – 2 2 2 – 2 4 – 1 + 2 = Simplify. 2 2 = Simplify. Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 (continued) b. cos 67.5° 14-7

  5. 12 13 2 2 2 Since 90° < < 180°, 45° < < 90° and is in Quadrant I. 2 1 – cos 2 sin = ± half-angle identity 12 13 – 1 – 2 Substitute. Choose the positive square root since is in Quadrant I. = 2 25 26 = Simplify. 5 26 26 = Simplify. Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 Given cos = – and 90° < < 180°, find sin . 14-7

  6. pages 810–811  Exercises 1. – 2. – 3. – 3 4. 1 5. – 6. 3 7. – 8. – 9. sin 2 = sin ( + ) = sin cos + cos • sin = 2 sin cos 10. tan 2 = tan ( + ) = = 11. 12. 7 – 4 3 13. 14. 15. 16. 3 – 2 2 17. 0 18. 19. 20. 21. 3 22. 23. 24. – 25. – 4 26. – 17 2 tan 1 – tan2 tan + tan 1 – tan tan 17 17 10 10 1 2 1 3 1 2 1 2 2 + 2 2 2 + 3 2 2 – 3 2 2 – 2 2 2 – 2 + 3 2 3 2 3 2 4 17 17 3 10 10 Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 14-7

  7. 27. sin 2R = 2 sin R cos R = 2 • = 28. cos 2R = cos2R – sin2R = – = – = 29. sin 2S = 2 sin S cos S = 2 • • = = 2 sin R cos R = sin 2R 30. sin2 = sin = ± = = = – = 31. tan = = = • = = = S 2 s t S 2 1 – cos S 1 + cos S r t 2rs t2 2 32. tan2 = (tan )2 = ± = = 33. No; since the sine function is periodic, A and B can have many different values. 34. – 35. – 36. 37. – 1 – cos S 1 + cos S t – r t + s t2 – s2 (t+ s)2 r2 (t+ s)2 s2 – r2 t2 = s t s2 t2 r2 t2 2 2 r t s t r t 2sr t2 S 2 2 2 S 2 1 – cos S 2 24 25 r t 1 – 2 1 – cos S 2 t – r 2t 1 2 r 2t 7 25 s t r t 24 7 1 – 1 – 1 – cos R 1 + cos R R 2 r t s t 25 24 1 + 1 + t – s t + s t + s t + s r t + s Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 14-7

  8. 45. 4 cos2 – 1 = 0 , , , 46. 1 47. –cos 48. cos – sin 49. Answers may vary. Sample: a. sin 60° = cos 60° = b. sin 120° = c. cos 30° = 50. Answers may vary. Sample: No; the graphs of y = and y = tan are only equal at certain finite values. 38. 39. 40. – 41. –2 42. cos (8 sin – 3) = 0 , , 0.384, 2.757 43. sin (4 cos – 3) = 0 0, , 0.723, 5.560 44. cos (2 sin2 – 1) = 0 , , , , , 1 2 2 3 2 4 3 2 3 2 5 4 3 4 2 3 4 3 5 3 7 4 1 2 2 5 5 3 2 5 5 3 2 3 2 tan 4 2 Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 14-7

  9. 51–56.Answers may vary. 51. 4 sin cos (cos2 – sin2 ) 52. 8 cos4 – 8 cos2 + 1 53. 54. ± + 55. ± ± + cos 56. ± A 2 1 – cos A 1 + cos A 1 – cos A 1 + cos A 57.a. tan = ± = ± • = ± = ± = Since tan and sin A always have the same sign, only the positive sign occurs. b. tan = ± = ± • = ± = ± = Since tan and sin A always have the same sign, only the positive sign occurs. 1 + cos A 1 + cos A sin2 A (1 + cos A)2 sin A 1 + cos A (1 – cosA)2 1 + cos2A (1 – cosA)2 sin2 A 1– cos2 A (1 + cos A)2 4 tan (1 – tan2 ) tan4 – 6 tan2 + 1 A 2 cos 2 1 2 1 2 1 2 ± 1 2 1 2 1 2 A 2 1 – cos A 1 + cos A 1 – cos A 1 + cos A 1 2 1 2 1 – cos A 1 – cos A 1± + cos 1 2 1 2 1± + cos 1 – cos A sin A A 2 Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 14-7

  10. 58. D 59. G 60.[2] sin = = = = [1] appropriate methods with minor error 61.[4] tan = = 0.5 = tan 2 = = = = = [3] appropriate method with minor error [2] correct answer without work shown [1] recognized using double-angle identities but did not apply them properly 62. 63. 64. 3 65. 12, about 4.1 66. 3, 2 1 2 0.5 1 2 tan 1 – tan2 135° 2 1 – cos 135° 2 1 3 4 4 3 1 – 2 2 2 2 – 2 2 1 2 2 2 2 + 2 2 1 2 2 1 – 1 3 2 2 2 1 4 1 – Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 14-7

  11. 3 2 – sin 3 = sin (2 + ) = sin 2 cos + cos 2 sin = (2 sin cos )cos + (cos2 – sin2 )sin = 3 sin cos2 – sin3 = 3 sin (1 – sin2 ) – sin3 = 3 sin – 4 sin3 2 + 2 2 2 20 29 3 58 2 – Double-Angle and Half-Angle Identities ALGEBRA 2 LESSON 14-7 1. Use a double-angle identity to find the exact value of sin 660°. 2. Use an angle sum identity and a double-angle identity to verify the identity sin 3 = 3 sin – 4 sin3 . 3. Use a half-angle identity to find the exact value of sin 67.5°. 4. Given cos = – and 180° < < 270°, find the exact value of cos . 14-7

  12. 11. 60° + 360° • n, 240° + 360° • n 12. , 13. , 14. , 15. , 0.63 16. , 1.28 17. , 1.25 18. , 1.28 19. , 1.60 20. , 1.25 21. 8, 36.9°, 53.1° Page 816 1. csc 2. 1 3. csc2 4. csc cos tan = • • = = 1 5. csc2 – cot2 = 1 + cot2 – cot2 = 1 6. sec cot = • = = csc 7. sec2 – 1= 1 + tan2 – 1 = tan2 8. 60° + 360° • n, 120° + 360° • n 9. 30° + 360° • n, 330° + 360° • n 10. 180° + 360° • n sin cos cos 1 1 sin 4 6.4 cos sin sin cos 6.4 5 5 4 1 cos cos sin 1 sin 6.4 5 4 3 5 3 5 3 3 4 3 4 6.4 4 5 4 Trigonometric Identities and Equations ALGEBRA 2 CHAPTER 14 14-A

  13. 22. 15.6, 50.2°, 39.8° 23. 46.5, 24.3°, 65.7° 24. 6.1, 25.3°, 64.7° 25. 91.8 m2 26. 13.8 in. 27. 17.9 ft 28. 25.8° 29. 17.6° 30. No; the Law of Sines requires at least one angle in order to set up a ratio of side-to-angle. 31. 30.4 cm 32. 48.8° 33. 47.7° 34. –sin ( – ) = –sin (–( – )) = sin ( – ) = cos 35. csc ( + ) = = = = sec 36. csc ( – ) = = = = –sec 1 sin cos + cos sin 1 sin (0) + cos (1) 1 cos 1 sin (– ( – )) 1 – sin ( – ) 2 2 2 2 2 2 2 2 2 1 – cos Trigonometric Identities and Equations ALGEBRA 2 CHAPTER 14 14-A

  14. 37. cos (– – ) = cos (– ) cos + sin (– ) sin = cos ( )(0) + sin (– )(1) = sin (– ) 38. 0, 39. , 40. 0; 41. 42. 43. 3 44. 45. 1 46. –1 47. Check students’ work. 3 2 1 2 2 2 2 2 3 2 3 3 Trigonometric Identities and Equations ALGEBRA 2 CHAPTER 14 14-A

More Related