410 likes | 429 Views
Experiment Tunka : High energy cosmic rays and Gamma-ray astronomy. L.A.Kuzmichev (MSU SINP) on behalf of Tunka Collaboration Napoli 2013. Tunka Collaboration. S.F.Beregnev , S.N.Epimakhov , N.N. Kalmykov , N.I.Karpov E.E. Korosteleva , V.A. Kozhin , L.A. Kuzmichev ,
E N D
Experiment Tunka : High energy cosmic rays and Gamma-ray astronomy L.A.Kuzmichev (MSU SINP) on behalf of Tunka Collaboration Napoli 2013
Tunka Collaboration S.F.Beregnev, S.N.Epimakhov, N.N.Kalmykov, N.I.KarpovE.E.Korosteleva, V.A.Kozhin, L.A.Kuzmichev, M.I.Panasyuk, E.G.Popova, V.V.Prosin, A.A.Silaev, A.A.Silaev(ju), A.V.Skurikhin, L.G.Sveshnikova I.V.Yashin, SkobeltsynInstituteofNucl.Phys.ofMoscowStateUniversity, Moscow,Russia; N.M.Budnev, O.A. Chvalaev, O.A.Gress,A.V.Dyachok, E.N.Konstantinov, A.V.Korobchebko, R.R.Mirgazov, L.V.Pan’kov, A.L.Pahorukov, Yu.A.Semeney,A.V. Zagorodnikov InstituteofAppliedPhys.ofIrkutskStateUniversity, Irkutsk,Russia; B.K.Lubsandorzhiev, B.A. Shaibonov(ju) , N.B.Lubsandorzhiev InstituteforNucl.Res.ofRussianAcademyofSciences, Moscow, Russia; V.S.Ptuskin IZMIRAN, Troitsk, MoscowRegion,Russia; Ch.Spiering, R.Wischnewski DESY-Zeuthen, Zeuthen, Germany; A.Chiavassa Dip.diFisicaUniversita' diTorinoand INFN, Torino, Italy. A.Haungs, F. Schroeder, R.Hiller Karlsruhe Institute of Technology, Karlsruhe, Germany D.Horns, M.Tlucziykont , R.Nachtigall, M.Kunnas Hamburg University, Germany
OUTLINE 1. Tunka-133. 2. Energy spectrum. 3. Mass composition 4. Plan for the Tunka-133 upgrading. 5. Low energy extension : Tunka-HiSCORE project.
1 km Tunka-133 EAS Cherenkov array – 175 optical detectors on the 3 km2 Energy threshold ~ 1015 eV Accuracy: core location ~ 10 m energy resolution ~ 15% Xmax < 25 g∙cm-2
Scientific aims • Search for Acceleration Limit of Galactic Sources • ( transition from galactic to extragalactic CR) • Study of a new methods of EAS registration • Low energy extension: Multi-TeV gamma-ray astronomy and CR in energy range 100 TeV - 5 PeV
Tunka-133: 19 clusters, 7 detectors ineach cluster Optical cable DAQ center Cluster Electronic box PMT EMI 9350 Ø 20 cm 4 channel FADC boards 200 MHz, 12 bit
Using of Cherenkov Light Lateral Distribution Function (LDF) for the Reconstruction of EAS Parameters LDF from CORSIKA Q(R) = F(R, p) (only one parameter) Experimental data fitted with LDF light flux at core distance 200 m – Q200 Energy P = Q(100)/Q(200) Xmax steepness of LDF
Energy reconstruction E = A (Q200) g Density of Cherenkov light at core distance of 200 m For 1016 – 1018 eV (CORSIKA): g = 0.94±0.01
Absolute energy calibration :The QUEST experiment ( Cherenkov detectors at EAS-TOP) Integral spectrum σsys(E) = 8% p Normalization point for Tunka-133 P – steepness of LDF (Lateral Distribution Function)
Three seasons of array operation • 2009 - 2010 :286hoursof good weather . • 2010 – 2011: 305 hours of good weather. • 2011 – 2012: 380 hours of good weather • 6106 eventswithenergy 1015 эВ. Trigger counting rate during one night. 50 detectors 1016 eV 10 events duringevery night withnumber of hitted detectors more than 100. Distribution of the number of hitted clusters in one event.
IN-events: Core position inside circle: R < 450m Zenith angle < 45° 2009-2012 >1016 eV: 63490 >1017 eV: 605 OUT- events: R <800 m > 1017 eV: 1900 800 m 450m
Shower front Tns T ns = (R+200/R0 )2 ×3.3 ns
WDF – width distant function ADF WDF LDF ADF – amplitude distant function is used for core location
1900 events > 1017 eV
Second knee γ~ 3.0 γ~ 3.3 ~3 ·1017 eV
σsys(E) = 8% At E= 6 1015 eV From QUEST experiment σsys(E) = 15% At 1018 eV due to uncertainty in g
Mean Depth of EAS maximum Xmax g·cm-2 Mean logarithm of primary mass.PRELIMINARY
Conclusions • 1. The spectrum in the energy range of 1016 to 1018eV cannot be fitted with single power law index • 3.21 ±0.01 (6·1015 – 2·1016 eV) • 2.97 ±0.01 (2·1016 – 1017 eV) • 3.30 ± 0.1 (3 ·1017 – 1018 eV) • There is an indication on the second knee at ~3·1017 eV • 3. Tunka spectrum = K-Gr spectrum inside energy reconstruction systematics. • The key question – to increase accuracy of absolute energy calibration. • Is it possible to have 5% accuracy? • 4. More statistics is needed at the energy range of 1017 – 1018eV • The array will continue data taking for another 4-5 seasons. • 5. Primary mass composition changes from the light (He) at the knee to the heavy at 3·1016eV. The mass composition is heavy till at least 1017eV. More statistics is needed in the energy range of 1017 – 1018eV
Plan for upgrading • Net of radio antennae Tunka-REX ( Radio Extension) • Deployment of Grande stintilator detectors - Cross calibration of Cherenkov light and fluorescent light methods. • Low energy extension – Tunka –HiSCORE
Tunka : 2013 -2014 Grande-station ( now in Moscow) HiSCORE
Registration of radio signals from EAS Short Aperiodic Loaded Loop Antenna (SALLA) (A.Haungs et al. Institute fur Kernphysick, Forschungszentrum, Karslruhe, Germany 20 antennas was installed in autumn 2012 Antennas are connected to the free FADC channels of Tunka-133 cluster electronics
Absolute energy calibration experiment.Repeating the “QUEST” at 1016 -1017 eV Lg (Ne / E, Tev) -P -Fe Zenith-angle: 0º -45º Energy: 1016 – 1017 eV • 20 scintillation counters, 10 m2 2000 events with E >3·1016 eV per season p P – steepness of LDF
Cross calibration of Cherenkov light and fluorescent light methods. Image detector from TUS experiment S= 2 -10 м2 Field of view ± 7 deg 7-10 km
Тunka-HiSCORE A wide-angle gamma observatory HiSCORE stands for Hundred*iSquare-km Cosmic Origin Explorer
Main Topics Gamma-ray Astronomy Search for the PeVatrons. VHE spectra of known sources: where do they stop? Absorption in IRF and CMB. Diffuse emission: Galactic plane, Local supercluster. Charged cosmic ray physics Energy spectrum and mass composition from 1014 to1018 eV. 108 events (in 1 km2 array) with energy > 1014eV per one season (400 hours). Particle physics Axion/photon conversion. Hidden photon/photon oscillations. Lorentz invariance violation. pp cross-section measurement. Quark-gluon plasma.
Methodical approaches for 3 stages • Shower front and LDFsampling technique (at the first stages). • Angular resolution – 0.1 deg, • Xmax measurement for hadron rejection. • Using of small mirrors net with cheap matrix of PMTs for imaging technique. • 3. Using of large area muon detectors for hadron rejection.
Tunka-HiSCORE – 1 km2 stage 1 150 m 9352KB 8’’, ET
Tunka-HiSCORE – 1km2 stage 2 150 m R11780 12’’ Hamamatsu 300 m 2 m 2 mirror, ±7º FOV, No image
Tunka-HiSCORE – 1km2 stage 3 150 m R11780 12’’ Hamamatsu 300 m Installing of PMTs matrix, Image techniques 2 m 2 mirror, ±7º FOV,
After October 2012: 3 optical stations for common operation with Tunka-133
200 m New station 150 m
Calibration light source 4 PMTs Station Electronics
all-particle spectrum and composition of cosmic rays <lnA> based on <Xmax>; data from Hoerandel 2007