250 likes | 449 Views
U Substitution Method of Integration. 5.5. The chain rule allows us to differentiate a wide variety of functions, but we are able to find antiderivatives for only a limited range of functions. We can sometimes use substitution to rewrite functions in a form that we can integrate.
E N D
The chain rule allows us to differentiate a wide variety of functions, but we are able to find antiderivatives for only a limited range of functions. We can sometimes use substitution to rewrite functions in a form that we can integrate.
U substitution • Choose a u and differentiate • Substitute the u and du back into integral • Integrate • Substitute back for u • IF YOU CAN’T REPLACE ALL OF THE TERMS IN THE ORIGINAL INTEGRAND, YOU CAN’T DO THE SUBSTITUTION!!!!!
Example 1: The variable of integration must match the variable in the expression. Don’t forget to substitute the value for u back into the problem!
One of the clues that we look for is if we can find a function and its derivative in the integrand. The derivative of is . Note that this only worked because of the 2x in the original. Many integrals can not be done by substitution. Example:
Example 2: Solve for dx.
We solve for because we can find it in the integrand. Example 4:
DAY 2 U Substitution
Example: Method 1
Example: Method 2
In another generation or so, we might be able to use the calculator to find all integrals. Until then, remember that half the AP exam and half the nation’s college professors do not allow calculators. You must practice finding integrals by hand until you are good at it! p
The technique is a little different for definite integrals. new limit new limit Example 8: We can find new limits, and then we don’t have to substitute back. We could have substituted back and used the original limits.
Leave the limits out until you substitute back. This is usually more work than finding new limits Example 8: Using the original limits: Wrong! The limits don’t match!
Example: Don’t forget to use the new limits.