1 / 47

Definición Potenciar es multiplicar un número por si mismo una cantidad de veces.

si se cumple que. 0 0. Es una forma indeterminada. Definición Potenciar es multiplicar un número por si mismo una cantidad de veces. La potenciación es un caso particular de la multiplicación con varios factores. Propiedades:. Primera. Potencia de exponente 0. Segunda:.

trang
Download Presentation

Definición Potenciar es multiplicar un número por si mismo una cantidad de veces.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. si se cumple que 00 Es una forma indeterminada Definición Potenciar es multiplicar un número por si mismo una cantidad de veces. La potenciación es un caso particular de la multiplicación con varios factores. Propiedades: Primera Potencia de exponente 0

  2. Segunda: Potencia de exponente 1 ejemplo Tercera: Producto de potencias de igual base ejemplo Cuarta: División de potencias de igual base ejemplo

  3. Quinta: Potencia de una potencia ejemplo Sexta: Potencia de un producto ejemplo Séptima: Producto de potencias de base distinta

  4. Octava: Propiedad distributiva Es distributiva respecto a la multiplicación y la división No es distributiva respecto a la adición y a la sustracción Potencia de exponente negativo Novena:

  5. Ejercicios En cada uno de los siguientes ejercicios simplifique y elimine cualquier exponente negativo:

  6. Problema La pregunta inoportuna: En una visita al santuario del Señor de los Milagros en Buga, cinco amigos compraron cinco medallas de precios diferentes: $5, $25, $125, $625 y $3125. Al salir del establecimiento observaron que sólo les quedaron: $1 a Juan, $2 a Pablo, $3 a Pedro, $4 a Jaime y $5 a Claudio. Jaime (el matemático) exclamó: “Si multiplicamos cada cantidad gastada por la cantidad restante y sumamos los cinco productos resulta 9615”. Sandra (la esposa de Pablo) preguntó: “Qué precio han pagado cada uno de ustedes por su medalla?”. Pablo, como siempre tan comprensivo, le dijo: “Deje de hacer preguntas Inoportunas y dedúzcalo usted misma”. ¿Pudo determinar Sandra cuál es el precio de cada medalla?.

  7. Solución: Sean: X= la cantidad restante del que pagó $5 por su medalla. y = la cantidad restante del que pagó $25 por su medalla. z= la cantidad restante del que pagó $125 por su medalla. w= la cantidad restante del que pagó $625 por su medalla. r= la cantidad restante del que pagó $3125 por su medalla. Entonces: Cancelando 5 obtenemos: Luego: Como por hipótesis se tiene que , entonces x=3 ya que éste es el único de estos números tal que 1923-x es divisible por 5. Por lo tanto: Observe que: (1)

  8. Pedro pagó $5 por su medalla Además de (1) se deduce que: Como por hipótesis se tiene que , entonces y=4 ya que éste es el único de estos números tal que 384-y es divisible por 5. Por lo tanto: (2) Jaime pagó $25 por su medalla de (2) se deduce que: Como por hipótesis se tiene que , entonces z=1 ya que éste es el único de estos números tal que 76-z es divisible por 5. Por lo tanto: (3) Juan pagó $125 por su medalla de (3) se deduce que: Como por hipótesis se tiene que , entonces w=5 ya que éste es el único de estos números tal que 15-w es divisible por 5. Por lo tanto:

  9. Claudio pagó $625 por su medalla Finalmente se tiene que: Pablo pagó $3125 por su medalla Observación:

  10. Ejemplos:

  11. Problema Una interesante suma: Observa que: 1=1 1+11=12 1+11+111=123 1+11+111+1111=1234 1+11+111+1111+11111=12345 ¿Puedes encontrar en general, el valor de la suma: 1+11+111+1111+ … +111 … 1 ? (¿Quién es?)

  12. Solución: Como luego

  13. La operación inversa de la potenciación se denomina radicación. Si x y r son números reales no negativos y n es un entero positivo, o x y r son números reales negativos y n es un número entero positivo Impar, se define:

  14. Propiedades: Sean m y n enteros positivos y x e y números reales. Entonces: Siempre y cuando los radicales representen números reales

  15. Ejercicios En cada uno de los siguientes ejercicios simplifique las respectivas expresiones:

  16. POLINOMIOS Herón el Viejo de Alejandría La palabra ecuación viene del latín aequatio que significa igualdad. Los primeros vestigios que existen de ellas, se remontan alrededor del año 2000 a.c. periodo en el cual aparece el Libro de Cálculo de Axmés en donde se presentan las ecuaciones de primer grado, a los Babilónicos se debe la resolución de ecuaciones de segundo grado, los griegos se limitaron a redescubrir las fórmulas babilónicas en términos geométricos, pero fueron Herón (alrededor del año 100) y Diofanto de Alejandríıa (siglo III) quienes lo hicieron en forma algebraica.

  17. Un polinomio de grado n en la variable x , es cualquier expresión de la forma En donde n es un entero no negativo, y i=1,2, … ,n son números reales. Ejemplos:

  18. Ejemplos: • El polinomio es un • polinomio de grado cero y se denomina polinomio constante. • 2) El polinomio es un polinomio de primer grado y se denomina polinomio lineal. • 3) El polinomio es un polinomio de tercer grado y se denomina polinomio cúbico.

  19. Ejemplos: Las siguientes funciones no son polinomios:

  20. COMBINACIÓN Y PERMUTACION. COMBINACIÓN: Es todo arreglo de elementos en donde no nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo. PERMUTACIÓN: Es todo arreglo de elementos en donde nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.

  21. Combinaciones y permutaciones ¿Qué diferencia hay? Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras: "Mi ensalada de frutas es una combinación de manzanas, uvas y bananas": no importa en qué orden pusimos las frutas, podría ser "bananas, uvas y manzanas " o "uvas, manzanas y bananas", es la misma ensalada. "La combinación de la cerradura es 472": ahora sí importa el orden. "724“ no funcionaría, ni "247". Tiene que ser exactamente 4-7-2. Si el orden no importa, es una combinación. Si el orden sí importa es una permutación. En otras palabras: Una permutación es una combinación ordenada.

  22. Definición: El número de permutaciones de n objetos es el número de formas en los que pueden acomodarse esos objetos en términos de orden. Definición: El número de permutaciones de 3 objetos es igual a: 6=3!. El número de permutaciones de n objetos es igual a: n!

  23. 1) Si un conjunto tiene n elementos: ¿Cuántos subconjuntos con un elemento puedo escoger de él?. Respuesta:n. 2) Si un conjunto tiene n elementos: ¿Cuántos parejas ordenadas con dos elementos diferentes puedo escoger de él?. Respuesta: Por cada escogencia de la primera componente hay n-1 opciones para escoger la segunda, por lo tanto, el número de parejas ordenadas con dos elementos diferentes es n (n-1).

  24. 3) Si un conjunto tiene n elementos: ¿Cuántos subconjuntos con dos elementos diferentes puedo escoger de él?. Respuesta: El número de parejas ordenadas con dos elementos diferentes es n (n-1), pero la pareja (a, b) es distinta de la pareja (b, a) aunque el conjunto {a, b}={b, a}, luego el número de conjuntos con tres elementos diferentes es: 4) Si un conjunto tiene n elementos: ¿Cuántos triplas ordenadas con todos sus elementos diferentes puedo escoger de él?. Respuesta: Por cada escogencia de la primera coordenada hay (n-1) (n-2) opciones para escoger la pareja integrada las otras dos coordenadas diferentes, por lo tanto, el número de triplas ordenadas con todos sus elementos diferentes es: n (n-1 )(n-2).

  25. 5) Si un conjunto tiene n elementos: ¿Cuántos subconjuntos con tres elementos diferentes puedo escoger de él?. Respuesta: El número de triplas ordenadas con todos sus elementos diferentes es n (n-1) (n-2), pero las triplas (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b) y (c, b, a) son todas distintas aunque los conjuntos {a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, a, b} y {c, b, a} son iguales luego el número de conjuntos con tres elementos diferentes que podemos escoger de un conjunto con n elementos es:

  26. 6) Si un conjunto tiene n elementos: ¿Cuántos r-uplas ordenadas de elementos diferentes puedo escoger de él?. Respuesta: Por cada escogencia de la primera coordenada hay (n-1) (n-2) … (n-r+1) opciones para escoger la r-1-upla integrada las otras r-1 coordenadas diferentes, por lo tanto, el número de r-uplas ordenadas con todos los elementos diferentes que se puede escoger de un conjunto con n elementos es: n (n-1) (n-2) … (n-r+1). pero: Este número se acostumbra notar

  27. 7) Si un conjunto tiene n elementos: ¿Cuántos subconjuntos con r elementos diferentes puedo escoger de él?. Respuesta: El número de r-uplas ordenadas con todas sus coordenadas diferentes es pero de cada conjunto se pueden obtener r! triplas Distintas, luego el número de conjuntos con r elementos diferentes que podemos escoger de un conjunto con n elementos es:

  28. Definición: El término se denomina combinatoria de n, r y se nota: Ejemplo: ¿Cuántos subconjuntos tiene un conjunto con n elementos?. Desarrollo:

  29. Propiedades de la combinatoria

  30. TRIÁNGULO DE PASCAL

  31. Ejercicios

More Related