1 / 67

EX

EX. A fair coin is tossed 3 times and let X be the random variable of number of heads in the 3 tosses. {X = 0} => {(TTT)} {X = 1} => {(TTH),(THT),(HTT)}. EX. P ( X = 0) = P {( TTT) } = 1 / 8 P ( X = 1) = P {( TTH),(THT),(HTT )} = 3 / 8 P ( X = 2) = P{ ( THH),(HHT),(HTH) ) = 3 / 8

trevor
Download Presentation

EX

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EX • A fair coin is tossed 3 times and let X be the random variable of number of heads in the 3 tosses. {X = 0} => {(TTT)} {X = 1} => {(TTH),(THT),(HTT)}

  2. EX • P(X = 0) = P{(TTT)} = 1/8 • P(X = 1) = P{(TTH),(THT),(HTT)} = 3/8 • P(X = 2) = P{(THH),(HHT),(HTH)) = 3/8 • P(X=3) = P{(HHH)} = 1/8

  3. x 2 3 4 5 6 7 8 9 10 11 12 6/36 5/36 4/36 3/36 2/36 1/36 The PMF of tossing two dies

  4. ANS.

  5. Ex • Three balls are to be randomly selected (without replacement) from an urn containing 20 balls numbered 1 to 20 • If we bet that at least one of the drawn balls has a number at least 17, what is the probability of winning?

  6. Ans. • Let X denote the largest number selected. • P(X >= 17) = P(x=17)+P(x=18)+P(x=19)+P(x=20) • = 16C2 / 20C3+17C2 / 20C3+18C2 / 20C3+19C2 / 20C3

  7. Ex • Three balls are randomly chosen from an urn containing 3 white, 3 red, and 5 black balls. Suppose that we win $1 for each white ball selected and lose $1 for each red ball selected. The probability that we win money ?

  8. Ans • Let X denote our total winning from the experiment. • P(X=1) = ((3C1*5C2)+ (3C2*3C1))/ 11C3 • P(X=2) = (3C2*5C1) / 11C3 • P(X=3) = (3C3) / 11C3

  9. Bernoulli random variable • An experiment has two possible outcomes, called “success” and “failure”: sometimes called a Bernoulli trial • The probability of success is p • X = 1 if success occurs, X = 0 if failure occurs Then p(0) = P{X = 0} = 1 – p and p(1) = P{X = 1} = p X is a Bernoulli random variable with parameter p.

  10. 負二項分配Negative Binomial Random Variables

More Related