1 / 48

Reductive evolution of bacterial genomes

Reductive evolution of bacterial genomes. Bérénice Batut Advisors : Guillaume Beslon , Carole Knibbe, Gabriel Marais. Goals. Buchnera aphidicola Endosymbiont 70% genome reduction Small N e. Which forces drive such reductive evolution ?. Prochlorococcus marinus

tryna
Download Presentation

Reductive evolution of bacterial genomes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reductive evolution of bacterial genomes • Bérénice Batut • Advisors : Guillaume Beslon, Carole Knibbe, Gabriel Marais B. Batut – Reductive evolution of bacterial genomes

  2. Goals Buchneraaphidicola Endosymbiont 70% genome reduction Small Ne Which forces drive such reductive evolution ? Prochlorococcusmarinus Free-living bacteria 30% genome reduction Large Ne • Moran et al., 2008 • Giovanonni et al., 2005 B. Batut – Reductive evolution of bacterial genomes

  3. Changer les slides filles Approaches • Simulating genomes under different scenarios (in silico experimental evolution) • The Aevolsimulator • Test of some hypotheses for reductive evolution • Analyzing real genomes (sequence analysis) • Reductive evolution inProchlorococcusmarinus • Other genomic features associated with reductive evolution B. Batut – Reductive evolution of bacterial genomes

  4. 2 types of investigation A changer • In silicoexperimental evolution • Aevol • Test of some hypotheses found in literature • Bioinformatics analysis • Prochlorococcusmarinus • Characterization of reductive evolution B. Batut – Reductive evolution of bacterial genomes

  5. AevolAn in silico experimentalevolutionplatform Generation 0 Generation 50,000 Generation 0 Generation 0 Possibility degree Possibility degree Possibility degree Possibility degree Proteome Proteome Genome Genome Biological function Biological function Biological function Biological function 5,000 bp 1 gene 99% non coding 5,000 bp 1 gene 99% non coding 8,979 bp 93 gene 38% non coding 5,000 bp 1 gene 99% non coding Possibility degree Possibility degree Possibility degree Possibility degree Phenotype Phenotype Phenotype Environment Environment Environment Environment Biological function Biological function Biological function Biological function 40,000 20,000 10,000 30,000 50,000 0 B. Batut – Reductive evolution of bacterial genomes

  6. AevolAn in silico experimentalevolutionplatform • Indirect selection of genome structure • Indirect selection of network complexity • Indirect selection of transcriptome structure B. Batut – Reductive evolution of bacterial genomes

  7. AevolAn in silico experimentalevolutionplatform B. Batut – Reductive evolution of bacterial genomes

  8. Changer les slides filles Simulating differentscenarioswith Aevol Reduction inpopulation size • ? Increase inmutation rate Environmentgetsmorestable Environment getsmore simple B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Less varying environment Less demanding environment

  9. Changer Results Smaller population size • ? Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  10. Reduction in population size Genes are lost but the intergenicregionsget longer B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  11. Changer Results Smaller population size • ? Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  12. Increase in mutation rate Genes are lost Intergenicregionsgetsmaller All the genomegetsreduced B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  13. Changer Results Smaller population size • ? Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  14. The environmentgets more stable Intergenicregionsgetshorter But Thenumber of genesincreases B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  15. Changer Results Smaller population size • ? Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  16. The environmentgets more simple Genes are lost and intergenicregionsgetsmaller All the genomeisreduced B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  17. Summary of the results B. Batut – Reductive evolution of bacterial genomes Higher mutation rates Lessvaryingenvironment Lessdemandingenvironment

  18. Changer 2 types of investigation • In silicoexperimental evolution • Aevol • Test of some hypotheses found in literature • Bioinformatics analysis • Prochlorococcusmarinus • Characterization of reductive evolution B. Batut – Reductive evolution of bacterial genomes

  19. Changer les slides filles Reductiveevolution for endosymbionts Mettrecouleurdifferente pour biblio • Increase in AT content: Moran & Plague, 2004 • Rapid sequence evolution: Moran, 1996; Wernegreen & Moran, 1999 • Maladapted codon usage: Moran & Plague, 2004 • Stable genome organization: Tamas et al., 2002 • Decrease in gene size: Andersson et al., 2002 • Genome compactness: Moran & Plague, 2004 • And Prochlorococcusmarinus ? B. Batut – Reductive evolution of bacterial genomes

  20. Phylogenetictree of Prochlorococcusand Synechococcus B. Batut – Reductive evolution of bacterial genomes

  21. Gene loss and genomereductionin Prochlorococcus B. Batut – Reductive evolution of bacterial genomes

  22. Changer Reductiveevolution for endosymbionts • Richness in AT bases: Moran & Plague, 2004 • Rapid sequence evolution: Moran, 1996; Wernegreen & Moran, 1999 • Low codon usage bias: Moran & Plague, 2004 • Stable chromosome: Tamas et al., 2002 • Shortening of genes: Andersson et al., 2002 • Genome compactness: Moran & Plague, 2004 • And Prochlorococcusmarinus ? B. Batut – Reductive evolution of bacterial genomes

  23. Increase in AT content associatedwithgenomereduction in Prochlorococcus B. Batut – Reductive evolution of bacterial genomes

  24. Changer Reductiveevolution for endosymbionts • Richness in AT bases: Moran & Plague, 2004 • Rapid sequence evolution: Moran, 1996; Wernegreen & Moran, 1999 • Low codon usage bias: Moran & Plague, 2004 • Stable chromosome: Tamas et al., 2002 • Shortening of genes: Andersson et al., 2002 • Genome compactness: Moran & Plague, 2004 • And Prochlorococcusmarinus ? B. Batut – Reductive evolution of bacterial genomes

  25. dN/dS ratio tends to belower in reducedcompared to non-reducedProchlorococcusgenomes This is in agreement with lower dN/dS in reduced Prochlorococcus compared to Synechococcus found in Hu& Blanchard (2009) B. Batut – Reductive evolution of bacterial genomes

  26. Changer Reductiveevolution for endosymbionts • Richness in AT bases: Moran & Plague, 2004 • Rapid sequence evolution: Moran, 1996; Wernegreen & Moran, 1999 • Low codon usage bias: Moran & Plague, 2004 • Stable chromosome: Tamas et al., 2002 • Shortening of genes: Andersson et al., 2002 • Genome compactness: Moran & Plague, 2004 • And Prochlorococcusmarinus ? B. Batut – Reductive evolution of bacterial genomes

  27. The codon usage biasislower in reducedProchlorococcus B. Batut – Reductive evolution of bacterial genomes

  28. Predictedgrowth rate isdecreased in reducedProchlorococcus • Growthpred • (Viera-Silva & Rocha 2010) • Estimation of minimal generation time based on : • Optimal growth temperature • Estimator of the strength of selection acting on codon usage bias • Empirical estimator of the strength of selection acting on codon usage bias in highly expressed genes (ribosomal genes) A clarifier B. Batut – Reductive evolution of bacterial genomes

  29. Smallernumber of tRNAgenes in reducedProchlorococcus tRNAScanSE (Lowe & Eddy 1997) B. Batut – Reductive evolution of bacterial genomes

  30. Timing of tRNAgeneloss in reducedProchlorococcus B. Batut – Reductive evolution of bacterial genomes

  31. Changer Reductiveevolution for endosymbionts • Richness in AT bases: Moran & Plague, 2004 • Rapid sequence evolution: Moran, 1996; Wernegreen & Moran, 1999 • Low codon usage bias: Moran & Plague, 2004 • Stable chromosome: Tamas et al., 2002 • Shortening of genes: Andersson et al., 2002 • Genome compactness: Moran & Plague, 2004 • And Prochlorococcusmarinus ? B. Batut – Reductive evolution of bacterial genomes

  32. Genomesseem more stable afterreduction Dufresne et al 2005 B. Batut – Reductive evolution of bacterial genomes

  33. Changer Reductiveevolution for endosymbionts • Richness in AT bases: Moran & Plague, 2004 • Rapid sequence evolution: Moran, 1996; Wernegreen & Moran, 1999 • Low codon usage bias: Moran & Plague, 2004 • Stable chromosome: Tamas et al., 2002 • Shortening of genes: Andersson et al., 2002 • Genome compactness: Moran & Plague, 2004 • And Prochlorococcusmarinus ? B. Batut – Reductive evolution of bacterial genomes

  34. Genes have similar size in all Prochlorococcus (reduced or non-reduced) Marais et al 2007 B. Batut – Reductive evolution of bacterial genomes

  35. Changer Reductiveevolution for endosymbionts • Richness in AT bases: Moran & Plague, 2004 • Rapid sequence evolution: Moran, 1996; Wernegreen & Moran, 1999 • Low codon usage bias: Moran & Plague, 2004 • Stable chromosome: Tamas et al., 2002 • Shortening of genes: Andersson et al., 2002 • Genome compactness: Moran & Plague, 2004 • And Prochlorococcusmarinus ? B. Batut – Reductive evolution of bacterial genomes

  36. The fraction of non-coding DNA islower in reducedProchlorococcus B. Batut – Reductive evolution of bacterial genomes

  37. Changer Summary of the genomicfeatures of reducedProchlorococcusmarinus • Richness in AT bases Yes • Rapid sequence evolution No • Low codon usage bias Yes • Stable chromosome Yes • Shortening of genes No • Genome compactness Yes B. Batut – Reductive evolution of bacterial genomes

  38. Perspectives • Differences between endosymbiotic and free-living reduced bacterial genomes • Framework for comparing simulated and real genomes • Test of more hypotheses • Selective pressure, rearrangements, … • Adaptation to oligotrophy • Adaptation to phagic pressure • “Black queen” hypothesis B. Batut – Reductive evolution of bacterial genomes

  39. Thankyou ! Beagle team (LIRIS/Inria) BGE team (LBBE) Guillaume Beslon Gabriel Marais Carole Knibbe Vincent Daubin

  40. B. Batut – Reductive evolution of bacterial genomes

  41. B. Batut – Reductive evolution of bacterial genomes

  42. B. Batut – Reductive evolution of bacterial genomes

  43. B. Batut – Reductive evolution of bacterial genomes

  44. B. Batut – Reductive evolution of bacterial genomes

  45. B. Batut – Reductive evolution of bacterial genomes

  46. Rapidevolution of sequences? B. Batut – Reductive evolution of bacterial genomes

  47. Genomecompactness ? B. Batut – Reductive evolution of bacterial genomes

  48. Genomecompactness ? B. Batut – Reductive evolution of bacterial genomes

More Related