110 likes | 248 Views
1/11. Analysis “ Wishlist ”. V. Blackmore CM38 23rd February 2014. 2/11. Purpose of this talk. Review the topics we’re looking at in the context of Step IV, V and VI. Review which topics are covered (or not covered.) Discuss what we can improve and aim for.
E N D
1/11 Analysis “Wishlist” V. Blackmore CM38 23rd February 2014
2/11 Purpose of this talk... • Review the topics we’re looking at in the context of Step IV, V and VI. • Review which topics are covered (or not covered.) • Discuss what we can improve and aim for. • Mostly trying to provoke discussion! So, to provide us with a little context...
3/11 Analysis at Step IV A full and definitive exploration of the ionisation cooling equation + Proof that we can predict it + Proof that we can measure it Depends on upstream beam line (mostly diffuser) Depends on magnetic lattice Ionisation Cooling Multiple scattering , depends on D2 selection Depends on material Measure a change in emittance Depends on particle species backgrounds!
4/11 Diffuser Step IV Operating States EMR SS1 FC SS2 CKOVs 7.5—8m TOF0 TOF1 Tracker planes Absorber TOF2 KL No fields No/empty absorber With absorber No fields, no absorber No fields, LH2 No fields, solid absorber Fields, no absorber Fields, LH2 Fields, solid absorber LiH Fields (Flip/Solenoid mode) Plastic, Al,... LiH wedge Noble Goal: Always have a Monte Carlo beforetaking data!
5/11 indicates “influences” NB: Each consists of many sub-analyses. PID and straight track reconstruction Detector alignment Multiple scattering: high-Z Multiple scattering: low-Z Background study No fields, no absorber No fields, LH2 No fields, solid absorber
6/11 indicates “influences” NB: Each consists of many sub-analyses. PID and straight track reconstruction Detector alignment Multiple scattering: high-Z Multiple scattering: low-Z Background study No fields, no absorber No fields, LH2 No fields, solid absorber Full track reconstruction & PID Measure of input beams Fields, no absorber Characterise lattice
7/11 Repeat for each type of absorber: liquid, disc or wedge PID and straight track reconstruction Detector alignment Multiple scattering: high-Z Multiple scattering: low-Z Multiple scattering: low-Z Background study Background study No fields, no absorber No fields, LH2 No fields, solid absorber Full track reconstruction & PID Heating term Measure of input beams Fields, no absorber Fields, LH2 Fields, solid absorber Characterise lattice
8/11 Repeat for each type of absorber: liquid, disc or wedge PID and straight track reconstruction Detector alignment Multiple scattering: high-Z Multiple scattering: low-Z Multiple scattering: low-Z Background study Background study No fields, no absorber No fields, LH2 No fields, solid absorber Cooling term Full track reconstruction & PID Heating term Measure of input beams Fields, no absorber Fields, LH2 Fields, solid absorber Characterise lattice Background study
9/11 Repeat for each type of absorber: liquid, disc or wedge PID and straight track reconstruction Detector alignment Multiple scattering: high-Z Multiple scattering: low-Z Multiple scattering: low-Z Background study Background study No fields, no absorber No fields, LH2 No fields, solid absorber Cooling term Full track reconstruction & PID Heating term Measure of input beams Fields, no absorber Fields, LH2 Fields, solid absorber Characterise lattice Background study Equilibrium emittance & ionisation cooling
10/11 Progress (MC only): “Circle of Glory” PID and straight track reconstruction The proportion of green is a “guesstimate” “Circle of Hope” Detector alignment “Circle of Gloom” Multiple scattering: high-Z Multiple scattering: low-Z Multiple scattering: low-Z Background study Background study No fields, no absorber No fields, LH2 No fields, solid absorber Heating term Cooling term Full track reconstruction & PID Measure of input beams Fields, no absorber Fields, LH2 Fields, solid absorber Characterise lattice Background study Equilibrium emittance & ionisation cooling
11/11 Progress (MC only): “Circle of Glory” PID and straight track reconstruction The proportion of green is a “guesstimate” “Circle of Hope” Detector alignment “Circle of Gloom” Multiple scattering: high-Z Multiple scattering: low-Z Multiple scattering: low-Z Background study Background study No fields, no absorber No fields, LH2 No fields, solid absorber Heating term Cooling term Full track reconstruction & PID + all of this influences Step V, Step VI... Measure of input beams Fields, no absorber Fields, LH2 Fields, solid absorber Characterise lattice Background study Equilibrium emittance & ionisation cooling