310 likes | 388 Views
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc. q(V bi -V a ). Imref, E Fn. E c. E FN. qV a. E FP. E Fi. Imref, E Fp. E v. x. -x pc. -x p. x n. x nc. 0. Forward Bias Energy Bands.
E N D
EE 5340Semiconductor Device TheoryLecture 15 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc
q(Vbi-Va) Imref, EFn Ec EFN qVa EFP EFi Imref, EFp Ev x -xpc -xp xn xnc 0 Forward Bias Energy Bands
Law of the junction: “Rememberto follow the minority carriers”
Ideal JunctionTheory Assumptions • Ex = 0 in the chg neutral reg. (CNR) • MB statistics are applicable • Neglect gen/rec in depl reg (DR) • Low level injection applies so that dnp < ppo for -xpc < x < -xp, and dpn < nno for xn < x < xnc • Steady State conditions
Diffusion Length model L = (Dt)1/2 Diffusion Coeff. is Pierret* model
Minority hole lifetimes Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991 The parameters used in the fit are τo = 10 μs, Nref= 1×1017/cm2, and CA = 1.8×10-31cm6/s.
Minority electron lifetimes Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991 The parameters used in the fit are τo = 30 μs, Nref= 1×1017/cm2, and CA = 8.3×10-32 cm6/s.
q(Vbi-Va) Imref, EFn Ec EFN qVa EFP EFi Imref, EFp Ev x -xpc -xp xn xnc 0 Forward Bias Energy Bands
CarrierInjection ln(carrier conc) ln Na ln Nd ln ni ~Va/Vt ~Va/Vt ln ni2/Nd ln ni2/Na x xnc -xpc -xp xn 0
Ideal diodeequation • Assumptions: • low-level injection • Maxwell Boltzman statistics • Depletion approximation • Neglect gen/rec effects in DR • Steady-state solution only • Current dens, Jx = Js expd(Va/Vt) • where expd(x) = [exp(x) -1]
Ideal diodeequation (cont.) • Js = Js,p + Js,n = hole curr + ele curr Js,p = qni2Dp coth(Wn/Lp)/(NdLp) = qni2Dp/(NdWn), Wn << Lp, “short” = qni2Dp/(NdLp), Wn >> Lp, “long” Js,n = qni2Dn coth(Wp/Ln)/(NaLn) = qni2Dn/(NaWp), Wp << Ln, “short” = qni2Dn/(NaLn), Wp >> Ln, “long” Js,n << Js,p when Na >> Nd
Diffnt’l, one-sided diode conductance ID Static (steady-state) diode I-V characteristic IQ Va VQ
Charge distr in a (1-sided) short diode dpn • Assume Nd << Na • The sinh (see L10) excess minority carrier distribution becomes linear for Wn << Lp • dpn(xn)=pn0expd(Va/Vt) • Total chg = Q’p = Q’p = qdpn(xn)Wn/2 Wn = xnc- xn dpn(xn) Q’p x xn xnc
Charge distr in a 1-sided short diode dpn • Assume Quasi-static charge distributions • Q’p= +qdpn(xn,Va)Wn/2 • dQ’p =q(W/2) x {dpn(xn,Va+dV) - dpn(xn,Va)} • Wn= xnc - xn(Va) dpn(xn,Va+dV) dpn(xn,Va) dQ’p Q’p x xnc xn
References 1 and M&KDevice Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. See Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996, for another treatment of the m model. 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981. 3 and **Semiconductor Physics & Devices, 2nd ed., by Neamen, Irwin, Chicago, 1997. Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989.