1 / 36

Etudes de Connectivités fonctionnelles et effectives

Etudes de Connectivités fonctionnelles et effectives. Oury Monchi, Ph.D. Unité de Neuroimagerie Fonctionnelle, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal & Université de Montréal. Les analyses que nous avons étudiées jusqu’à mainteant

vartan
Download Presentation

Etudes de Connectivités fonctionnelles et effectives

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Etudes de Connectivités fonctionnelles et effectives Oury Monchi, Ph.D. Unité de Neuroimagerie Fonctionnelle, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal & Université de Montréal

  2. Les analyses que nous avons étudiées jusqu’à mainteant • nous permettent d’évaluer si l’activité d’une une ou • plusieurs régions du cerveau augmentent de matière • significative dansune condition par rapport ou une autre • Durant les travaux pratiques vous avez aussi vu comment • reconstruire le signal BOLD pour une région et une • condition donnée • Ceci dit ces anlyses ne nous permettent pas d’avoir • d’information sur les intéractions entre différentes régions • du cerveau pendant que l’on performe une tâche

  3. Études de connectivitées Analyses de données IRMf 1. Connectivitée fonctionnelle 2. Connectivitée effective B. Fusions multimodales 1. TMS/PET 2. TMS/fMRI C. Imagerie par Tenseur de Diffusion Dr. Thomas Jubault (12 Mars)

  4. Experimentally designed input Functional integration How does one region influence another (coupling b/w regions)? How is coupling effected by experimental manipulation (e.g. attention)? Multivariate analyses of regional interactions Functional Segregation Where are regional responses to experimental input? Univariate analyses of regionally specific effects Structure – Function Relationships

  5. System analyses in functional neuroimaging Functional specialisation Analyses of regionally specific effects: which areas constitute a neuronal system? Functional integration Analyses of inter-regional effects: what are the interactions between the elements of a given neuronal system? Functional connectivity = the temporal correlation between spatially remote neurophysiological events Effective connectivity = the influence that the elements of a neuronal system exert over another MECHANISM-FREE MECHANISTIC MODEL

  6. Functional Connectivity: The Basics • Aims • Summarise patterns of correlations among brain systems • Find those spatio-temporal patterns of activity which explain most of the variance in a series of repeated measurements (e.g. several scans in multiple voxels) • Procedure • Select those voxels whose activation levels show a significant difference between the conditions of interest • Calculate the covariance matrix • Principle Component Analysis (PCA) is a Singlular Value Decomposition (SVD) of the covariance matrix. This produces Eigenimages

  7. Functional connectivity: methods • Seed-voxel correlation analyses • Eigenimage analysis • Principal Components Analysis (PCA) • Singular Value Decomposition (SVD) • Partial Least Squares (PLS) • Independent Component Analysis (ICA)

  8. Pros & Cons of functional connectivity • Pros: • useful when we have no model of what caused the data (e.g. sleep, hallucinatons, etc.) • Cons: • no mechanistic insight into the neural system of interest • inappropriate for situations where we have a priori knowledge and experimental control about the system of interest models of effective connectivity necessary

  9. SPM{Z} V5 activity time V1 V5 V5 attention V5 activity no attention V1 activity PPI example: attentional modulation of V1→V5 Attention = V1 x Att. Friston et al. 1997, NeuroImage 6:218-229 Büchel & Friston 1997, Cereb. Cortex 7:768-778

  10. V1 V5 V5 V1 attention attention PPI: interpretation Two possible interpretations of the PPI term: V1 V1 Modulation of V1V5 by attention Modulation of the impact of attention on V5 by V1.

  11. Pros & Cons of PPIs • Pros: • given a single source region, we can test for its context-dependent connectivity across the entire brain • Cons: • very simplistic model: only allows to model contributions from a single area • ignores time-series properties of data • not easily used with event-related data • operates at the level of BOLD time series limited causal interpretability in neural terms, more powerful models needed DCM!

  12. Functional and Effective Connectivity

  13. Models of effective connectivity = system models.But what precisely is a system? change ofstate vectorin time • System = set of elements which interact in a spatially and temporally specific fashion. • System dynamics = change of state vector in time • Causal effects in the system: • interactions between elements • external inputs u • System parameters  :specify the nature of the interactions • general state equation for non-autonomous systems overall system staterepresented by state variables change ofstate vectorin time

  14. Practical steps of a DCM study - I • Conventional SPM analysis (subject-specific) • DCMs are fitted separately for each session → consider concatenation of sessions or adequate 2nd level analysis • Definition of the model (on paper!) • Structure: which areas, connections and inputs? • Which parameters represent my hypothesis? • How can I demonstrate the specificity of my results? • What are the alternative models to test? • Defining criteria for inference: • single-subject analysis: stat. threshold? contrast? • group analysis: which 2nd-level model?

  15. Attention to motion in the visual system Stimuli250 radially moving dots at 4.7 degrees/s Pre-Scanning 5 x 30s trials with 5 speed changes (reducing to 1%) Task - detect change in radial velocity Scanning(no speed changes) 6 normal subjects, 4 x 100 scan sessions; each session comprising 10 scans of 4 different conditions F A F N F A F N S ................. F - fixation point only A - motion stimuli with attention (detect changes) N - motion stimuli without attention S - no motion PPC V3A V5+ Attention – No attention Büchel & Friston 1997, Cereb. Cortex Büchel et al.1998, Brain

  16. SPC V1 IFG V5 A simple DCM of the visual system Attention • Visual inputs drive V1, activity then spreads to hierarchically arranged visual areas. • Motion modulates the strength of the V1→V5 forward connection. • The intrinsic connection V1→V5 is insignificant in the absence of motion (a21=-0.05). • Attention increases the backward-connections IFG→SPC and SPC→V5. 0.55 0.26 0.72 0.37 0.56 0.42 Motion 0.66 0.88 -0.05 Photic 0.48 Re-analysis of data fromFriston et al., NeuroImage 2003

  17. SPC SPC V1 V1 V5 V5 Comparison of three simple models Model 1:attentional modulationof V1→V5 Model 2:attentional modulationof SPC→V5 Model 3:attentional modulationof V1→V5 and SPC→V5 Attention Attention Photic Photic Photic SPC 0.55 0.03 0.85 0.86 0.85 0.70 0.75 0.70 0.84 1.36 1.42 1.36 0.89 0.85 V1 -0.02 -0.02 -0.02 0.56 0.57 0.57 V5 Motion Motion Motion 0.23 0.23 Attention Attention Bayesian model selection: Model 1 better than model 2, model 1 and model 3 equal → Decision for model 1: in this experiment, attention primarily modulates V1→V5

  18. Transcranial Magnetic Stimulation • TMS involves placing an electromagnetic coil on the subject scalp. • High-intensity current is rapidly turned on and off in the coil through the discharge of capacitors. • The current flowing briefly in the coil generates a changing magnetic field that induces an electric current in the neural tissue, in the opposite direction.

  19. Stimulators and Coils Single-pulse TMS Repetitive TMS Paired-pulse TMS

  20. TMS and Functional Imaging (PET) [15O] H2O and [11C]raclopride TMS coil

  21. TMS and PET Frameless Stereotaxy • Precise localization of the TMS coil relative to the brain is critical for the interpretation of brain-mapping studies • This is best achieved by acquiring a structural MR image of the subject’s brain and using the image to guide positioning of the coil in real time. • The frameless stereotactic system allows to co-register the subject's MRI with the head's surface and in a second step with the location of the TMS coil on the scalp.

  22. Paired-pulse TMS/ [15O] H2OPET 12 ms ISI 3 ms ISI t t 3.6 3.8 3.0 3.0 Z= 61 Z= 48 Strafella and Paus, J. Neurophysiol. 2001

  23. TMS and PET [11C] raclopride ROI Analysis • 7.4% reduction in ipsilateral caudate • No change in contralateral caudate • No change in putamen, accumbens dorsolateral PFC occipital t -6 X X -3 Cortical Control of Dopamine release Reductions in [11C]raclopride BP Strafella et al., J. Neurosci. 2001

  24. TMS and PET [11C] raclopride ROI Analysis • 9.4% reduction in ipsilateral putamen • No change in contralateral putamen • No change in caudate, accumbens occipital Primary motor cortex t -6 X X -3 Cortical Control of Dopamine release Reductions in [11C]raclopride BP Strafella et al., Brain 2003

  25. IRMf et TMS ‘offline’ Continuous Theta Burst Stimulation (cTBS) • 80% active motor threshold • Similar to slow rTMS • Suppresses the cortico-excitability • Long lasting after-effect Huang et al. Neuron 2005

  26. IRMf et TMS online

  27. Acknowledgements SPM DCM course Drs. Marcus Gray & Petra Vetter Drs. Klaas Enno Stephan &Lee Harrison Dr. Randy McInstosh, Dr. Barry Hortwitz TMS/PET Dr. Antonio P. Strafella, Ji-Hyun Ko

More Related