1 / 16

10.2

10.2. Quadratic Functions. 10.2 – Quadratic Functions. Goals / “I can…” I can graph quadratic functions of the form y = ax + bx + c I can graph quadratic inequalities. 2. 10.2 – Quadratic Functions. 2.

Download Presentation

10.2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 10.2 Quadratic Functions

  2. 10.2 – Quadratic Functions • Goals / “I can…” • I can graph quadratic functions of the form y = ax + bx + c • I can graph quadratic inequalities 2

  3. 10.2 – Quadratic Functions 2 • Yesterday we learned about y = ax and y = ax + c. The a changes the ????? and the c moves the parabola ?????. 2

  4. 10.2 – Quadratic Functions 2 • Today we look at y = ax + bx + c. The bx moves the parabola horizontally, changing the location of the line of symmetry.

  5. 10.2 – Quadratic Functions 2 • In an equation y = ax + bx + c, the line of symmetry can be found by the equation • The x-coordinate of the vertex is

  6. Finding the Line of Symmetry 10.2 – Quadratic Functions When a quadratic function is in standard form For example… Find the line of symmetry of y =3x2 – 18x + 7 y = ax2 + bx + c, The equation of the line of symmetry is Using the formula… Thus, the line of symmetry is x = 3 This is best read as … the opposite of b divided by the quantity of 2 times a.

  7. Finding the Vertex 10.2 – Quadratic Functions y = –2x2 + 8x –3 We know the line of symmetry always goes through the vertex. STEP 1: Find the line of symmetry STEP 2: Plug the x – value into the original equation to find the y value. Thus, the line of symmetry gives us the x – coordinate of the vertex. y = –2(2)2 + 8(2) –3 y = –2(4)+ 8(2) –3 y = –8+ 16 –3 To find the y – coordinate of the vertex, we need to plug the x – value into the original equation. y = 5 Therefore, the vertex is (2 , 5)

  8. USE the equation A Quadratic Function in Standard Form 10.2 – Quadratic Functions The standard form of a quadratic function is given by y = ax2 + bx + c There are 3 steps to graphing a parabola in standard form. MAKE A TABLE using x – values close to the line of symmetry. Plug in the line of symmetry (x – value) to obtain the y – value of the vertex. STEP 1: Find the line of symmetry STEP 2: Find the vertex STEP 3: Find two other points and reflect them across the line of symmetry. Then connect the five points with a smooth curve.

  9. 10.2 – Quadratic Functions • Graph the equation y = -3x + 6x + 5 2

  10. 10.2 – Quadratic Functions • Graphing Quadratic Inequalities • Graphing a parabola with an inequality is similar to a line. We use solid and dashed lines and we shade above (greater) or below (less) the line.

  11. Forms of Quadratic Inequalitiesy<ax2+bx+c y>ax2+bx+cy≤ax2+bx+c y≥ax2+bx+c • Graphs will look like a parabola with a solid or dotted line and a shaded section. • The graph could be shaded inside the parabola or outside.

  12. 10.2 – Quadratic Functions 1. Sketch the parabola y=ax2+bx+c (dotted line for < or >, solid line for ≤ or ≥) ** remember to use 5 points for the graph! 2. Choose a test point and see whether it is a solution of the inequality. 3. Shade the appropriate region. (if the point is a solution, shade where the point is, if it’s not a solution, shade the other region)

  13. Graph y ≤ x2 + 6x - 4 10.2 – Quadratic Functions Test point * Opens up, solid line * Vertex: (-3,-13) • Test Point: (0,0) • 0≤02+6(0)-4 • 0≤-4 So, shade where the point is NOT!

  14. Graph: y > -x2 + 4x - 3 10.2 – Quadratic Functions Test Point * Opens down, dotted line. * Vertex: (2,1) • x y • 0 -3 • 1 0 • 1 • 0 • -3 * Test point (0,0) 0>-02+4(0)-3 0>-3

  15. 1) y ≥ x2 and 2)y ≤ -x2 + 2x + 4 10.2 – Quadratic Functions SOLUTION! • Graph both on the same coordinate plane. The place where the shadings overlap is the solution. • Vertex of #1: (0,0) Other points: (-2,4), (-1,1), (1,1), (2,4) • Vertex of #2: (1,5) Other points: (-1,1), (0,4), (2,4), (3,1) * Test point (1,0): doesn’t work in #1, works in #2.

  16. 10.2 – Quadratic Functions • Graph: y > x + x+ 1 2

More Related