1 / 27

LAGUNA

LAGUNA. L arge A pparatus for G rand U nification and N eutrino A strophysics. Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM. Why ?. Neutrinos oscillations => New Particle Physics Main line besides future accelerator experiments

wylie
Download Presentation

LAGUNA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM

  2. Why ? Neutrinos oscillations => New Particle Physics • Main line besides future accelerator experiments • Baryon number violation ? => Nucleon decay(Search for Proton Decay) • Baryon asymmetry  Leptogenesis ? Q13, CP violation in leptonic sector ? (Long Baseline Neutrino Experiments)

  3. Astrophysics New Neutrino Observatories wanted Neutrinos as probes • Study of gravitational collapse(Supernova Neutrinos) • Study of star formation in the early universe (Diffuse Supernovae Neutrinos Background) • Precision study of thermonuclear fusion processes(Solar Neutrinos) • Test of geophysical models(Geoneutrinos)

  4. LENA • Low Energy Neutrino Astronomy • Diffuse Supernovae Neutrino Background • Supernova Neutrinos • Solar Neutrinos • Geoneutrinos • Proton Decay

  5. LENA: Diffuse SN Background ne + p -> e+ + n ~25% of events are due to v’soriginating from SN @ z>1! Rates depend on: supernova model, star formation rate, neutrino mass hierarchy Range 20 to 220 / 10 years “most probable” value ~ 100 Information on Supernova models & Star Formation rate (z~2) M. Wurm et al., Phys. Rev D 75 (2007) 023007

  6. LENA: Diffuse SN Background • optical measurements will determine the SNR with high accuracy • with this input, the spectral slope of the DSN can be used to distinguish between different SN explosion scenarios comparison of count ratesin the energy bins10MeV < EB1 < 14MeV15MeV < EB2 < 25MeV

  7. LENA: Supernova Neutrinos Assumption: Supernova II with 8 solar masses at 10 kpc distance ne flux and spectrum ne flux and spectrum

  8. LENA: Supernova Neutrinos Total neutrino flux Total energy spectrum

  9. LENA: Supernova Neutrinos Depending on threshold: p, nu - scattering dominated by nmandnt n + p -> n + p Threshold ~ 50 pe (photoelectrons)

  10. LENA: Solar Neutrinos LENA Fiducial Volume for solar n: 18 x 103 m3 • High statistic ( ~ 5.4 x 103 / day ) 7Be n + e ->n + e • test of small flux fluctuations in time • CNO and pep – neutrinos ( ~ 3 x 102 / day ) • solar neutrino luminosity • contribution of CNO cycle to solar energy release • Charged current ne (13C,13N) e- reaction ( ~ 103 / year ) • spectroscopy of 8B-n at energies below 5 MeV • (A. Ianni et al., hep-ph/0506171)

  11. LENA: Solar Neutrinos Non standard Interactions ? (e.g. flavor changing neutral currents) Standard MSW scenario 7Be pep CNO 8B Friedland, Lunardini, Peña-Garay, hep-ph/0402266

  12. CNO and the age of Globular Clusters • 14N(p,g)15O new value? (new result from LUNA) • Prediction CNO-n altered by factor ~2 • Age of Globular Clusters increased by factor 0.7 bis 1 Gy ! • Measurement of CNO -n : determination of metallicity in the centre of the Sun

  13. LENA: Solar Neutrinos Electron recoil spectrum Requirements: low background levels in U, Th, 210Pb at least ~4000 m.w.e. shielding

  14. LENA: Geo Neutrinos • Detection via inverse beta decay • measurement of radiogenic contribution to terrestrial heat (~ 40 TW) • test of the Bulk Silicate Earth model • test of unorthodox models of Earth‘s core (is there a breeder reactor ?)

  15. Rate of Geo-neutrinos in LENA LENA @ Pyhäsalmi: ~ 1.5 x 103 events / year Scaling KamLAND result to LENA: between 3 x 102 and 3 x 103 events / year Positron spectrum (arb. units) Reactor BG Uranium Uranium + Thorium

  16. Proton Decay in Supersymmetry SU(5) • GUT scale: • Preferred decay modes: • = (0.3 – 3) 1034y (S.Raby et al, 2002) • < 1035y (Babu, Pati, Wilzcek, 1998)

  17. Proton Decay(non SUSY) (P. Nath 2006) Limits from SuperKamiokande:

  18. LENA: Proton Decay

  19. LENA: Proton Decay

  20. LENA: Separartion e- m-like events ?

  21. Conclusions • LAGUNA – Design study for a large future European observatory (Water, Argon, Scintillator) • design study until ~ 2011 • on APpec road map for Launch after design study completed • LENA – Physics Potential in Low Energy Neutrino Astronomy and Proton Decay • Proton Decay: T. Marrodan-Undagoitia et al., Phys. Rev. D 72 (2005) 075014 • Geo-Nus: K.. Hochmuth et al., Astropart. Phys. 27 (2007) 21 • DSNB: M. Wurm et al., Phys. Rev. D 75 (2007) 023007

More Related