330 likes | 572 Views
Teori Kos Problem Set. PROBLEM 1. Kos pengeluaran firma bersamaan dengan : kos ekplisit . kos implisit . kos lepas . kos lesap. PROBLEM 1. Kos pengeluaran firma bersamaan dengan : kos ekplisi t . kos implisit . kos lepas . kos lesap. PROBLEM 2.
E N D
PROBLEM 1 Kos pengeluaran firma bersamaan dengan: • kos ekplisit. • kos implisit . • kos lepas . • kos lesap .
PROBLEM 1 Kos pengeluaran firma bersamaan dengan: • kos ekplisit . • kos implisit . • kos lepas . • kos lesap .
PROBLEM 2 Other things constant, the firm’s optimal production technique and input combination is found where the: • firm’s isocost line intersects an isoquant. • isocost line is tangent to the horizontal axis. • point where two of the isoquants intersects. • isoquant and isocost lines are tangent to each other.
PROBLEM 2 Other things constant, the firm’s optimal production technique and input combination is found where the: • firm’s isocost line intersects an isoquant. • isocost line is tangent to the horizontal axis. • point where two of the isoquants intersects. • isoquant and isocost lines are tangent to each other.
PROBLEM 3 Suppose that a firm initially faces a given operating budget and given input prices. A change in the relative prices of the inputs used in production, other things constant, causes the: • isocost line to shift to the right. • isocost line to shift to the left. • isoquants to shift closer together. • Isocost line to rotate and change the absolute value of its slope.
PROBLEM 3 Suppose that a firm initially faces a given operating budget and given input prices. A change in the relative prices of the inputs used in production, other things constant, causes the: • isocost line to shift to the right. • isocost line to shift to the left. • isoquants to shift closer together. • Isocost line to rotate and change the absolute value of its slope.
PROBLEM 4 In a short-run production function, once production encounters diminishing returns, the total variable cost curve will: • begin to fall at an increasing rate. • begin to increase at a decreasing rate. • begin to rise at an increasing rate. • begin to fall at a decreasing rate.
PROBLEM 4 In a short-run production function, once production encounters diminishing returns, the total variable cost curve will: • begin to fall at an increasing rate. • begin to increase at a decreasing rate. • begin to rise at an increasing rate. • begin to fall at a decreasing rate.
PROBLEM 5 You work for the XYZ Co. and are in charge of establishing a new office facility for the company. You will have $1,000 per week to spend on computers and labors. You can hire labor at a rate of $10 per hour or $400 per week. You can lease computers for $40 per day or $200 per week. Write an equation for the isocost constraint within which you must operate.
PROBLEM 5 You work for the XYZ Co. and are in charge of establishing a new office facility for the company. You will have $1,000 per week to spend on computers and labors. You can hire labor at a rate of $10 per hour or $400 per week. You can lease computers for $40 per day or $200 per week. Write an equation for the isocost constraint within which you must operate. Solution: $1000 = $200 K + $400 L
PROBLEM 6 Suppose a firm’s production uses only two inputs, capital (K) and labor (L); and the price of capital is r per unit and the price of labor is w per unit. If MPK/r > MPL/w, what should the firm do?
PROBLEM 6 Suppose a firm’s production uses only two inputs, capital (K) and labor (L); and the price of capital is r per unit and the price of labor is w per unit. If MPK/r > MPL/w, what should the firm do? Solution: The firm should substitutes capital for labor along an isoquant until a tangency point between the highest attainable isoquant and the firm’s isocost line is reached.
PROBLEM 7 Suppose that a firm A is operating under conditions of constant returns to scale. Assuming that input prices remain constant in the long-run, draw the long-run average total cost curve for the firm.
PROBLEM 7 Suppose that a firm A is operating under conditions of constant returns to scale. Assuming that input prices remain constant in the long-run, draw the long-run average total cost curve for the firm. Solution: The long-run average total cost curve for the firm operating under constant returns to scale is a horizontal line. Kos LRAC Output
PROBLEM 8 For the typical firm operating in the short-run, the relationship between the marginal cost and average total cost curve is such that: • if marginal cost is greater than average total cost, then average total cost must be falling. • if average total cost is greater than marginal cost, then marginal cost must be falling. • if average total cost is less than marginal cost, the marginal cost must be rising. • if marginal cost equals average total cost, average total cost must be falling.
PROBLEM 8 For the typical firm operating in the short-run, the relationship between the marginal cost and average total cost curve is such that: • if marginal cost is greater than average total cost, then average total cost must be falling. • if average total cost is greater than marginal cost, then marginal cost must be falling. • if average total cost is less than marginal cost, the marginal cost must be rising. • if marginal cost equals average total cost, average total cost must be falling.
PROBLEM 9 At the least-cost input combination of labor and capital, which of the following is correct? • MRTSLK = r/w. • MPL / MPK = r/w. • MPL = MPK. • The absolute slope of the isocost line is equal to the MRTSLK.
PROBLEM 9 At the least-cost input combination of labor and capital, which of the following is correct? • MRTSLK = r/w. • MPL / MPK = r/w. • MPL = MPK. • The absolute slope of the isocost line is equal to the MRTSLK.
PROBLEM 10 The planning horizon refers to: • the limit to production decisions which exists if firms have a fixed input. • the situation in which all inputs are fixed and firms are combining inputs in fixed proportions. • the length of time into the future beyond which it is simply impossible to make cost minimizing decisions. • the long run.
PROBLEM 10 The planning horizon refers to: • the limit to production decisions which exists if firms have a fixed input. • the situation in which all inputs are fixed and firms are combining inputs in fixed proportions. • the length of time into the future beyond which it is simply impossible to make cost minimizing decisions. • the long run.
PROBLEM 11 Keluk pengembangan firma menunjukkan A. pilihan output yang memaksimumkan untung pada setiap kemungkinan harga. B. pilihan input yang meminimumkan kos untuk setiap kemungkinan tingkat output pada harga input yang tetap. C. pilihan input yang meminimumkan kos untuk setiap kemungkinan tingkat output apabila kadar sewa meningkat di sepanjang pengeluaran. D. pilihan input yang meminimumkan kos untuk setiap tingkat output yang memaksimumkan untung.
PROBLEM 11 Keluk pengembangan firma menunjukkan A. pilihan output yang memaksimumkan untung pada setiap kemungkinan harga. B. pilihan input yang meminimumkan kos untuk setiap kemungkinan tingkat output pada harga input yang tetap. C. pilihan input yang meminimumkan kos untuk setiap kemungkinan tingkat output apabila kadar sewa meningkat di sepanjang pengeluaran. D. pilihan input yang meminimumkan kos untuk setiap tingkat output yang memaksimumkan untung.
PROBLEM 12 Jadual di bawah menunjukkan tingkat output dan jumlah kos pengeluaran sebuah firma. • Berapakah jumlah kos tetap? • Berapakah kos tetap purata pada output 5 unit? • Berapakah jumlah kos berubah purata bagi 5 unit output? • Berapakah kos berubah purata pada output 5 unit?
PROBLEM 12 (cont 1) • Jawapan: • Jumlah kos tetap = RM50 • Kos tetap purata pada output 5 unit = 50/5 = RM10 • Jumlah kos berubah bagi 5 unit output = 105 - 50 = RM55 • Kos berubah purata pada output 5 unit = 55/5 = RM11
PROBLEM 13 Jadual berikut menunjukan hubungan di antara tingkat output dengan kos bagi sebuah firma Output Jumlah Kos Kos purata (dalam unit) (dalam RM) (dalam RM) R 400 20 S 800 16 Jika jumlah kos tetap ialah RM100, berapakah kos boleh ubah purata bagi output sebanyak S unit?
PROBLEM 13 (cont 1) Jadual berikut menunjukan hubungan di antara tingkat output dengan kos bagi sebuah firma Output Jumlah Kos Kos purata (dalam unit) (dalam RM) (dalam RM) R 400 20 S 800 16 Jika jumlah kos tetap ialah RM100, berapakah kos boleh ubah purata bagi output sebanyak S unit? Jawapan: Kos purata = 800/S = 16; S = 800/16 =50 Jumlah kosberubah = Jumlah kos – Jumlah kos tetap = 800-100=700 Kos berubah purata = 700/50 = RM14
PROBLEM 14 Jadual berikut menunjukkan jumlah output & kos sut j/pendek sebuah firma. Jika kos tetap ialah RM 63, berapakah kos purata & kos berubah pada output 5 unit?
PROBLEM 14 (cont 1) Jadual berikut menunjukkan jumlah output & kos sut j/pendek sebuah firma. Jika kos tetap ialah RM 63, berapakah kos purata & kos berubah pada output 5 unit? 35 65 89 109 137 175 200 40
PROBLEM 15 Yang manakah di antara pernyataan berikut TIDAK BENAR mengenai kos marginal? A kos marginal merupakan tambahan kepada kos total apabila satu unit keluaran bertambah B kos marginal adalah lebih besar daripada kos purata apabila kos purata menurun C kos marginal adalah sama dengan kos purata apabila kos purata adalah minimum D kos marginal boleh jadi menurun, malar atau menaik.
PROBLEM 15 (cont 1) Yang manakah di antara pernyataan berikut TIDAK BENAR mengenai kos marginal? A kos marginal merupakan tambahan kepada kos total apabila satu unit keluaran bertambah B kos marginal adalah lebih besar daripada kos purata apabila kos purata menurun C kos marginal adalah sama dengan kos purata apabila kos purata adalah minimum D kos marginal boleh jadi menurun, malar atau menaik.
PROBLEM 16 Lukiskan keluk kos marginal bagi A, B, C, D.
C A Kos B D Kuantiti Kos Kuantiti PROBLEM 16 (cont 1) Lukiskan keluk kos marginal bagi A, B, C, D. - 30 20 10 10 20 30 40 - 40 40 40 40 40 40 40 - 40 50 60 70 80 90 100 - 35 30 25 20 15 10 5