220 likes | 321 Views
High Precision Hypernuclear Spectroscopy at JLab. Liguang Tang Hampton University Content What we learned What we will do next. Lanzhou University and SNP2013, December, 2013. Introduction – Baryonic interactions.
E N D
High Precision Hypernuclear Spectroscopy at JLab Liguang Tang Hampton University Content What we learned What we will do next Lanzhou University and SNP2013, December, 2013
Introduction – Baryonic interactions Understanding B-Binteractions is one of the essential tasks in Nuclear Physics: How the “world was built” H (1p) C(3 ) Astronomical Scale - Neutron Stars - He ( - 2p, 2n) • Hypernuclei: Study YN and YY interactions • A gateway to B-B interactions beyond YN and YY
Introduction – Hypernuclei • A novel feature of -hypernuclei • Short range interactions • coupling, NN 3-B forces • Change of core structures • Drip line limit • No Pauli blocking to • Probe the nuclear interior • Baryonic property change or single particle nature of in heavy baryonic system • Two-body effective -Nucleus potential for p-shell hypernuclei: VΛN(r) = Vc(r) + Vs(r) SΛSN + VΛ(r) LNSΛ + VN(r) LΛSN + VT(r) S12 The radial integral of Vi forms a unique set of parameters with which the N interactions can be fitted using a set of experimental results. • G-Matrix: Realistic N interactions LN
Hypernuclear Experiments at JlabUsing ElectroproductionMechanisum + - e e’ K- K+ K+ p n n The (e, e’K+) Reaction ZA ZA ZA Z-1A ZA ZA The (K-, -) Reaction The (+, K+) Reaction • High momentum transfer (~300-400MeV/c) • Deeply bound, highest possible spin, both unnatural and natural parity states • Small production cross section but compensated by high beam intensity • Neutron rich hypernuclei and high iso-spin states (important to study - coupling) • Capable for high precision that is important for hypernuclear spectroscopy • Complimentary to spectroscopy produced by other mechanisms
Hall C Program During CEBAF 6GeV Period PHASE I : (12B) Proved feasibility with 0.8 MeV resolution PHASE III (7He*, 10Be, 12B, 52V) Extend further in medium heavy mass region (~0.6 MeV FWHM) PHASE II: (7He, 12B, 28Al) High yield and better resolution (~0.6 MeV FWHM) Lifetime of Heavy Hypernuclei
6 GeV Program (HKS) High Lights p(e, e’K+) and using CH2 target Precise calibration of the kinematics coordinates and space Also involved in optimization of the reconstruction optics 2009, HKS-HES Jlab Hall C M= 0.030.014 MeV/c2 M(-) = 76.9650.031 MeV/c2
Example: High Precision Spectroscopy of 12B 8 peaks identified; Energy resolution: 543 keV FWHM; Statistical significance(5) > 4.5 (smallest peak a) HKS 2009 R(1- :2-) 1:2.7 #1 c 624 20keV FWHM d b e #2 #3 a HKS: B(#1, g.s.) = 11.38 0.02(Stat.) 0.148(Sys.) MeV Emulsion: B(g.s.) = 11.37 0.06(Stat.) 0.04(Sys.) MeV
12Cvs12B: s Coupled to Low-Lying 11C or 11B Core States E(sys) = 0.09 13- #3 13- 6.050 6.0200.055 4th Doublet 23- 23- 3- 3- Low cross sections 3/2- 22- 3/2- 5.020 22- 5/2- 4.804 5/2- 4.445 4 4.319 6.266 12- 3.0830.050 12- 2.833 2.958 #2 0- 2nd Doublet 0- 1/2- 1/2- 2.125 2.000 3 2 1 3/2- 3/2- 0.1700.017 21- 21- 0.162 #1 1st Doublet 0 0 0 11- 0 11- 11B 12B [MeV] 12C [MeV] [MeV] 11C [MeV] Mass Spectroscopy by HKS Spectroscopy by KEK-E566 JLab Hall C E05-115(2009) K. Hosomi et al. / Nuclear Physics A 914 (2013) 184–188 4th doublet separation: E(13- - 23-) 0.246 0.06(stat) 0.10(sys.) MeV Theory prediction: E(13- - 23-) = 0.107 (Millener)
12B: Spectroscopy in P-Shell States Theory (D.J. Millener) HKS Experiments Ex (MeV) State (Structure; J) Ex (MeV) Peak SD shell 11B Core S a 9.0090.077 11B(3/2-; gs) P3/2; 2+ 10.48 b 10.2880.059 (40keV) 11B(3/2-; gs) P; 1+ 10.52 11B(3/2-; gs) P1/2; 2+ 10.98 (70keV) c 10.9840.030 11B(3/2-; gs) P3/2; 3+ 11.05 d 11.7310.043 SD shell 11B Core S 11B(1/2-; 2.125) P3/2; 2+ 12.95 e 12.5550.080 (100keV) 11B(1/2-; 2.125) P; 1+ 13.05 SD shell 11B shell structure: S4P6(SD) Such unpredicted structures appear to be common in previously measured 12C and 12B spectrum
Program High Lights – cont. (7He) - First observation of the 7He spectroscopy - • S. N. Nakamura et al., Phys. Rev. Lett. 110, 012502, (2013) A=7 isospin triplet (T=1) hypernuclei 7He g.s. (1/2+) #1 #2 #3 HKS 2009 JLab E05-115 4 times more statistics 2+ #3 #2 #1 E. Hiyama, et al., PRC53 2078 (1996)
Program High Lights – cont. (10Be) Charge Symmetry Breaking Λ Λ n p α α α α 10Be 10B Λ Λ
Program High Lights – cont. (10Be) 5 Doublets - Parity States (0ħ only) pΛ 3-/4- 4th 11.23 2-/3- 1st 2.53 3-/4- 3rd 6.48 1-/2-g.s. 0.0 0-/1- 2nd 3.22 Calculated by D.J. Millener
Program High Lights – cont. (10Be) pΛ 3-/4- 4th 11.23 2-/3- 1st 2.53 3-/4- 3rd 6.48 1-/2-g.s. 0.0 0-/1- 2nd 3.22 • SD shell configuration mxing • Full 1ħ calculation needed • Positive parity core states
KEK E140a SKS Program High Lights – cont. (28Al) JLab E01-011 28Si(e, e’K+)28Al (dΛ) HKS 2005 pΛ SΛ 28Si(p+,K+)28Si
Program High Lights – cont. (28Al) JLab E01-011 28Si(e, e’K+)28Al (dΛ) HKS 2005 pΛ SΛ
Importance of The Jlab Experiments • High precision spectroscopy of hypernuclear structure needed to improve understanding of the N interactions • Wide range of spectroscopy helping to investigate the property of the N interactions Goal of The Future Experiments • High precision • High yield • Wide range (elementary to the heaviest possible hypernuclei (A200) • Clean from background (at least below medium heavy) • Addition of new physics program – decay spectrscopy
Future Project: Super Hypernuclear Physics Experiment at JLab Enge () Unified collaboration from the previous Hall A and C collaborations HRS (e’) Septum Hampton is leading the collaboration in designing the future experiments HKS (K) HES () Septum HRS – HKS: (e, e’K+) experiments for mass spectroscopy HKS – Enge or HKS – HES: New decay -spectroscopy experiment
Hypernuclei in wide mass range E89-009, E01-011, E05-115(Hall C) E94-107(Hall A) 1 20 50 200 1057 A Future mass spectroscopy (new proposal) H, 7Li, 9Be, 10B, 12C, 16O, 28Si, 52Cr Elementary Process Strangeness electro-production Neutron/Hyperonstar, Strangeness matter Hyperonization Softening of EOS ? Light Hypernuclei (s,p shell) Fine structure Baryon-baryon interaction in SU(3) LS coupling in large isospinhypernuclei Cluster structure Medium/heavyHypernuclei Single particle potential Distinguish ability of a hyperon Uo(r), m*(r), VNN, …
Study of Light Hypernuclei by Pionic Decay at JlabIllustration on the Main Features Comparison of Spectroscopic and Background - Production SPECTROSCOPY Light Hypernuclei to Be Investigated e e p * - K+ p A1Z1 stop (b) Additions from 9Li and its continuum (Phase II: 9Be target) 6 3/2+ AZ 1/2+ Jp=? VS 1- A2Z2 7Li A(Z-1) A1(Z1+1) 8He 9Li 8Li 5 (Z-1) = Z1+Z2; A=A1+A2 6Li 1/2+ 7H 3B background 1-? 5/2+ 3/2+ 2- 4 BACKGROUND e Previously measured e Ex Ex Ex 0 0 0 1 1 1 * 3 Mirror pairs K+ Ex 0 2 - p(n) ,(-) N 2 AZ (A-1)Z’ 8Be 8B 9Li 8H 7He 6He 9B 8He 3H 6Li 10Be 10Li 10B 12B 9He 7Li 9Be 5H 4H 6H 8Li 7H 11Be 11B 1 A 2 6 7 11 12 8 1 5 3 4 9 10
Illustration of Decay Pion Spectroscopy Additions from 12B and its continuum (Phase III: 12C target) (c) 1- 12B 9Be 10Be 8Be 9B 11B 10Li 9He 11Be 8H Jp=? 10B 5/2+ 3B background 8B (b) Additions from 9Li and its continuum (Phase II: 9Be target) 3/2+ 1/2+ 1- 7Li 8He 9Li 8Li 6Li 1/2+ 7H 3B background 1-? 5/2+ 3/2+ 2- Ex Ex Ex (a) 0 0 0 1 1 1 2-B decay from 7He and its continuum (Phase I: 7Li target) Ex 0 2 1-? 0+ 1/2+ 3H 6He 1/2+ 4H 7He 6H 3B background 3/2+ 5H 5/2+ Ex PMax PMin Ex 2 0 0 2 90.0 100.0 110.0 120.0 130.0 140.0 - Momentum (MeV/c)
Physics Goal of Decay Pion Spectroscopy • Precise B (20keV) and high resolution (160keV FWHM) , spin-parity determination of g.s., charge symmetry breaking (CSB) from mirror pairs • Neutron rich light hypernuclei (- coupling) and neutron drip line limit (6H and 8H) • Formation of quasi free continuum and fragmentation mechanism This part of experiment is pending on our feasibility test result from MAMI-C. Two quick tests were in 2011 and 2012. New test will be done in Spring of 2014.
Summary • JLabhypernuclear physics program is unique in the global Strange Nuclear Physics research • Existing results need to be published soon • It needs to continue in the 12 GeV period and new program needs to be solidly established with the best optimization