1 / 18

DYNAMIC FORCE ANALYSIS

DYNAMIC FORCE ANALYSIS. WEEKS-2,3. MASS RELATIONS. Location of Center of Mass : y m 1 m 2 m n O z R x y. m 1 m 2 m n x. O. x 1. G. x 2. x n. R 1. G. R 2. R n. x. dm. G. MASS RELATIONS. Mass Moments and Products of Inertia:

Samuel
Download Presentation

DYNAMIC FORCE ANALYSIS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DYNAMIC FORCE ANALYSIS WEEKS-2,3

  2. MASS RELATIONS • Location of Center of Mass: ym1m2 mn O z R x y m1m2mnx O x1 G x2 xn R1 G R2 Rn x dm G

  3. MASS RELATIONS • Mass Moments and Products of Inertia: • Mass Moments of Inertia Mass Products of Inertia • Inertia Tensor If there is symmetry wrt three axes: Ixy= Ixz= Iyz=0 (In this case,Ixx, Iyy, Izz are principal moments of inertia) If there is symmetry wrt two axes: Two of Ixy,Ixz,Iyz=0 If there is symmetry wrt one axis : Oneof Ixy,Ixz,Iyz=0 Unit:massXdistance2

  4. Inertia Forces and D’alembert’s Principle F1 m F3   aG h aG  F G G FG MG F2 Newton’s Law: F=maG(F=FG) MG=Fh=IG (h=IG/maG) h is selected according to the sense of 

  5. Fa F   FGa h aG  aG G G FG (F=FG) TGa MG D’alembert’s Principle: F- maG= 0 F+ FGa = 0 F=0(Inertia Force: Fa=FGa= - maG) (A fictitious force) MG-IG = 0  MG+TGa =0  M=0(Inertia Torque: TGa= -IG) (A fictitious torque)

  6. 3 G3 B 73° FC 3 4 aG3 A 4 18,7° 2 G4 ω2 115° 5,1° C G2,O2 127° O4 aG4 EXAMPLE (Analytical Solution) AO2=60 mm O4O2=100 mm BA=220 mm BO4= 150 mm CO4=CB=120 mm G3A= 90 mm G4O4=90 mm m3=1.5 kg m4=5 kg IG2=0.025 kg.m2 IG3=0.012 kg.m2 IG4=0.054 kg.m2 2=0 3=-119k r/s2 4=-625k r/s2 FC=-0.8j N aG3= 162 aG4= 104 233° m/s2 -73.2 °m/s2 G4O4C = 20.4° G4O4B = 36° G3AB = 30° G

  7. FaG3=-m3aG3 TaG3=-IG33 G3 F43 3 B F23 A F32 A F34 2 FaG4 =-m4aG4 M12 FC F12 G4 G2,O2 C O4 TaG4=-IG44 F14 FREE BODY DIAGRAMS 4 unknowns 3 equations 5 unknowns 3 equations 4 unknowns 3 equations Total: 9 unkowns 9 equations A matrix solution can be performed in the computer. Practically, the most suitable way is to make a coupled solution of links 3 and 4, for F34 and F43 . Therefore, the solution is reduced to 2 equations with 2 unknowns.

  8. F34 FaG4 =-m4aG4 FC G4 C O4 TaG4=-IG44 F14 MOMENT AT LINK 4WRT POINT O4 • ΣMO4=0 • ΣMO4= O4G4xFaG4 + TaG4 + O4C x FC + O4B x F34= 0 • ΣMO4=0.09[cos(20.4+5.1)i + sin25.5j] x 5(104)[cos(233+180)i+sin 53j] + (0.054)(625k) 413°=53° +0.12(cos 5.1i + sin 5.1j) x (-800j) +0.15[cos(36+20.4+5.1)i + sin61.5j] x(F34xi+F34y j)=0 -0.125F34x + 0.083F34y = 37 (1)

  9. FaG3=-m3aG3 TaG3=-IG33 G3 F43 3 B F23 A MOMENT AT LINK 3WRT POINT A • ΣMA=0 • ΣMA= AG3 x FaG3 + TaG3 + AB x F43 =0 • ΣMA= 0.09[cos(30+18.7)i +sin48.7j] x • 1.5 (162) [cos(-73.2+180)i+sin(106.8)j] • +(0.012)(119k) • +0.22(cos18.7i+sin18.7j) x (-F34xi-F34yj)=0 • 0.0705F34x-0.208F34y=-20 (2)

  10. F34 FaG4 =-m4aG4 FC G4 C O4 TaG4=-IG44 F14 Finding Forces F34 and F14 • -0.125F34x + 0.083F34y = 37 • 0.0705F34x-0.208F34y=-20 • F34x=-300 F34y=-5,39 F34=-300i-5.39j N • Force Balance at Link 4 • ΣF=0 F14+F34+FC+FaG4=0 • F14-300i-5.39j-800j+5(104)(cos53i+sin53j)=0 • F14=-13i+390j N

  11. FaG3=-m3aG3 TaG3=-IG33 G3 F43 3 B F23 A Finding Force F23 • Force Balance at Link 3 • ΣF=0 F23+F43+FaG3=0 • F23+300i+5.39j+1.5(162)(cos106.8i+sin106.8j)=0 • F23=-230i-238j N

  12. F32 A 2 M12 F12 G2,O2 Finding Force F12 and MomentM12 • Force Balance at Link 2 • ΣF=0 F12+F32=0 • F12=-F32=F23=-230i-238j N • Moment Balance at Link 2 • ΣMO2=0 O2A x F32 + M12 + TaG2=0 • 0.06(cos115i+sin115j)x(230i+238j)+M12k+0=0 • M12=18.6 N.m M12=18.6 k N.m

  13. B F34O4B FaG4 =-m4aG4 FaG3=-m3aG3 TaG3=-IG33 G3 FC F43 G4 3 B C O4 TaG4=-IG44 F23 A F14 EXAMPLE (Graphical Solution) MO4=0 -(F34O4B)O4B-FC(O4C)x- (FG4)ax (O4G4)y+(FG4)ay(O4G4)x+(TG4)a =0 -(F34O4B)(0.15)- (800)(0.12 cos5.1)- (5)(104cos53)(0.09sin25.5)+ (5)(104sin53)(0.09cos25.5)+(0.054)(625)=0 (F34O4B)=-268.4 MA=0 -(F43AB)AB+(FG3)ax (AG3)y+(FG3)ay(AG3)x+(TG3)a=0 -(F43AB)(0.22)+(1.5)(-162cos106.8)(0.09sin48.7)+ (1.5)(162sin106.8)(0.09cos48.7)+(0.012)(119)=0 (F43AB)= 90.9 (F34AB)= 90.9 F43AB

  14. B F34O4B FaG4 =-m4aG4 FC G4 C O4 TaG4=-IG44 181 F14 Link 4: F=0 !!! (F34O4B) is negative Force scale (hf) : 1cm=100N Of Force scale (hf) : 1cm=50N F14 F34AB 92 F34O4B F34 F34//O4B FC F34//AB F34 (FG4)a F34= (6cm)(50 N/cm)=300 N F14= (3.9cm)(100 N/cm)=390 N F34= 300 /181 N F14= 390 /92 N

  15. FaG3=-m3aG3 TaG3=-IG33 G3 F43 3 B F23 A F32 A 2 M12 F12 G2,O2 Link 3: F=0 Force scale (hf) : 1cm=50N Link 2: F=0 F12=-F32=F23= 330 /226 N 226 F43 A F32 M12 FG3a F23 F12 h Of O2 MO2=0 M12 – F32 h =0 M12 =18.6 N.m M12 =18.6k N.m F23= (6.6cm)(50 N/cm)=330 N F23= 330 /226 N

  16. Example y O2A=3 in. W2=18 lb BA=12 in. W3=3.5 lb G2O2=1.25in. W4=2.5 lb G3A=3.5 in IG2=0.00369in.lb.s2 IG3=0.110in.lb.s2 B 4 FB O2 G4  30 2 2 3 G2 G3 A 2=0 3=-3090k r/s2 FB=800 180 °N aG2= 2640 150  ft/s2 aG3= 6130 158.3° ft/s2aG4= 6280 180° ft/s2 O2A sin30 = BA sin =7.18 ° Problem will be solved by including gravity forces.

  17. W4 aG4 B All forces pass through mass center G4 for the moment balance 4// G4 FB FG4a Sense is assumed F34 F14 W4 MA=0 AB x(FB+ F14+W4+FG4a)+ + AG3X(W3+FG3a) + TG3a=0 12(cos7.18i+sin7.18j)X[-800i+F14j-2.5j+ +(2.5/386)(6280)(12)i] + 3.5(cos7.18i+sin7.18j)X[-3.5j+ +(3.5/386)(6130)(12)(-cos158.3i-sin158.3j)]+ +(0.110)(3090)k=0  F14=30.374 j lb 3+4// FG4a FB B TG3a aG3 F14 G3 A FG3a W3 F23

  18. 3+4// F=0 F23+ FG3a + W3+FB+F14+W4+FG4a=0 F23+(3.5/386)(6130)(12)(-cos158.3i-sin158.3j)]-3.5j-800i+30.374j-2.5j+ (2.5/386)(6280)(12)i=0 F23=-307.8i+222.245j lb 4// F=0 F34+FB+F14+W4+FG4a=0 F34-800i+30.374j-2.5j+(2.5/386)(6280)(12)i=0  F34=311.92i-27.874j lb F12 2// F=0 F32+F12+W2+FG2a=0 307.8i-222.245j+F12-0.95j+(0.95/386)(2640)(12)(-cos150i-sin150j)=0 F12=-375.32i+256.58j lb MO2=0 O2G2X FG2a+ O2G2X W2+O2AX F32+M12=0 0+1.25(cos30i-sin30j)X(-0.95j)+3(cos30i-sin30j)X(307.8i- 222.245j)+M12k =0 O2 G2 FG2a M12 F32 W2 A M12=104.67 k in.lb

More Related