1 / 30

Lezione 3 Acceleratori

Lezione 3 Acceleratori. Lezione 3. ….. riassunto Anelli di collisione Generalità e definizione della luminosità ( R= s L ) Oscillazioni e stabilità dei fasci Oscillazioni longitudinali o di fase o di sincrotrone dovute alla radiofrequenza

bond
Download Presentation

Lezione 3 Acceleratori

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lezione 3 Acceleratori • Lezione 3. ….. riassunto • Anelli di collisione • Generalità e definizione della luminosità (R=s L) • Oscillazioni e stabilità dei fasci • Oscillazioni longitudinali o di fase o di sincrotrone dovute alla radiofrequenza • Oscillazioni trasversali o di betatrone. Sono causate dai campi magnetici. • Piano di fase trasverso : Emittanza ed accettanza Rivelatori di Particelle

  2. Lezione 3Anelli di collisione Anelli di accumulazione ( generalità ) In un Collider tutto funziona come in un sincrotrone, ma le particelle non vengono estratte alla fine del ciclo, ma mantenute nell’anello (e+e-, p-antip) o negli anelli ( pp ) e mandate a collidere l’una contro l’altra. In un anello di collisione si guadagna moltissimo in energia ( siamo nel c.m.) anche se si perde in rate. [ luminosità minore] Rivelatori di Particelle

  3. a b Anelli di collisione |pa|=|pb| s=(Ea+Eb)2 Acceleratore pb=0 s=ma2+mb2+2Eamb ~2Eamb a b Lezione 3Anelli di collisione Energia Rivelatori di Particelle

  4. Lezione 3Luminosità Un anello di collisione non è altro che un sincrotrone fasci in bunch. Un bunchcolpisce un altrobunchche si muove in senso opposto. In questo caso più che di intensità del fascio (fasci) si parla di luminosità della macchina. La luminosità dipende anche dalla geometria dei fasci e dalla loro densità. La luminosità non è altro che il rate di interazioni per sezione d’urto unitaria. Per chiarire il concetto consideriamo: • un fascio estratto da un acceleratore che colpisce una targhetta. • due fasci di un collider che collidono l’uno contro l’altro. Rivelatori di Particelle

  5. Lezione 3Luminosità • Fascio su targhetta Consideriamo un fascio di intensità n1 particelle che colpisce una targhetta di lunghezza l e di densità di particelle n2 per ogni singola particella il numero di interazioni nella targhetta sarà N=sintx n2xl essendo sintla sezione d’ urto di interazione. Le dimensioni trasverse del fascio e della targhetta non entrano in gioco (targhetta > dimensioni fascio). Il rate è R=(dN/dt)=sintxn1xn2xl e combinando le caratteristiche della targhetta e del fascio: R=sintxL L = luminosità ed ha le dimensioni [cm-2s-1] La luminosità non è altro che il rate di interazioni per sezione d’ urto unitaria. Rivelatori di Particelle

  6. Lezione 3Luminosità 2) Collider Nel caso di un collider invece: • Importano le dimensioni ed allineamento dei fasci. • Possiamo non essere nel c.m. (Hera, PEP2). • Le particelle (bunch) possono incrociarsi ad angoli ≠ 0. Quale semplice esempio consideriamo un collider ad e+e- oppure protone antiprotone. In questo caso i due fasci viaggiano nello stesso anello, in direzioni opposte, ma collidono in pochi punti, poiché sono tenuti separati al di fuori di questi punti. Nel caso protone-antiprotone si possono tenere separati i due fasci con dei quadrupoli. Nel caso e=e- (LEP) i due fasci sono tenuti separati elettrostaticamente. 4 metri + - Vmax=± 150 KV Rivelatori di Particelle

  7. Lezione 3Luminosità Consideriamo 2 pacchetti in cui la densità di particelle per unità di area nel piano trasverso è dato da: Cioè 2 distribuzioni gaussiane identiche e normalizzate ad un totale di n1 ed n2 particelle rispettivamente. Rivelatori di Particelle

  8. Lezione 3Luminosità Il numero di interazioni per ogni incrocio dei fasci si ottiene integrando su tutte le particelle del fascio 1 moltiplicato per la loro probabilità di interazione. • Il numero di particelle del fascio 1 in un elemento di area dxdy è: • la probabilità di interazione di una particella del fascio 1 che si trova in x,y è: = al numero di particelle del fascio 2 che si trovano in un’area pari alla sint Rivelatori di Particelle

  9. Lezione 3Luminosità Il numero totale di interazioni per bunch e per incrocio sarà: Infatti: Rivelatori di Particelle

  10. Lezione 3Luminosità Se abbiamok pacchetti in ogni fascio( 2k punti di incrocio ) e se f è la frequenza di rivoluzione il rate per incrocio,essendo n1,2 il numero totale di particelle per anello è: Oppure usando le correnti i1=n1ef ed i2=n2ef Rivelatori di Particelle

  11. n (s-1) < l > Lezione 3Luminosità • Esempio: paragone acceleratore-collider (stessa energia nel c.m. e stessa sezione d’urto di interazione (e.g. e.m. ~ 1mb) • Acceleratore n= densità del fascio incidente =1012 particelle s-1 r= densità della targhetta = 1gr/cm3 l= spessore della targhetta =1cm sint= sem = 1mb A= numero di Avogadro = 6x1023 Rivelatori di Particelle

  12. n1 n2 Lezione 3Luminosità • Collider n1=n2= particelle per bunch i1= i2=i=50 mA  n1=n2=n=i/(ef)=3.3x1011 particelle F= sezione trasversa dei fasci= 0.1x0.01 cm2 B= numero di bunch = 1 f= frequenza di rotazione = 106 s-1 Rivelatori di Particelle

  13. Lezione 3Luminosità Osserviamo L ~ 1032 cm-2 s-1. • Luminosità tipiche di collider e+e- sono 1031÷1032 • LHC (pp) ha una luminosità di progetto di 1034 Rivelatori di Particelle

  14. Lezione 3 Oscillazioni e stabilità dei fasci La presenza della radiofrequenza fa sί che le particelle si raggruppano in pacchetti (bunch). In un acceleratore circolare si innestano inoltre, ogniqualvolta la particella passa nella cavità a RF con la fase F non giusta (ma comunque molto vicina a FS ) delle oscillazioni di sincrotrone o oscillazioni longitudinali ( oscillazioni di fase o di energia). Nel caso di piccoli movimenti si innescano delle oscillazioni identiche a quelle dell’oscillatore armonico e con frequenza proporzionale ( in genere minore) alla frequenza di rivoluzione. Rivelatori di Particelle

  15. Lezione 3 Oscillazioni e stabilità dei fasci Per avere stabilità (ovvero soluzione dell’equazione dell’oscillatore armonico (sin e cos)) la particella deve passare nella RF quando questa ha una fase FS<p/2 per un acceleratore circolare a focalizzazione forte (con quadrupoli) quando la particella accelerata è non relativistica ( g ~1 ), mentre per g più elevato deve essere p/2<FS<p. Questo comporta che all’iniezione ho una certa fase, che cambia per g più elevato  devo spegnere la RF  si spacchetta il fascio  posso perdere il fascio. Rivelatori di Particelle

  16. Lezione 3 Stabilità dei fasci La frequenza angolare di una particella che gira in un sincrotrone è data da: Con t periodo di rivoluzione e L circonferenza dell’orbita. Differenziando ln(w) otteniamo: Ricorda p=gbc Dove ap è chiamato fattore di compressione dell’impulso, ed è definito come ap=(dL/L)/(dp/p) L’espressione fra parentesi è normalmente scritta come: Si osserva che htr<0 quando l’energia del fascio è maggiore di Utr=gtrmc2 mentre è >0 per sincrotroni all’iniezione (bassa energia) o sempre per acceleratori lineari. È questo il momento in cui bisogna cambiare la fase del campo elettrico. Rivelatori di Particelle

  17. Lezione 3 Oscillazioni di sincrotrone Le quantità fisiche della particella generica sono connesse a quelle della particella sincrona ( indicata con l’indice s) tramite le seguenti relazioni: Energia totale U = Us+dU Impulso p = ps+dp Frequenza angolare w = ws+dw Periodo di rivoluzione t = ts+dt ( dw e dt hanno segno opposto). Siccome la particella sincrona deve arrivare alla RF in fase possiamo scrivere: wrf = hws Con h intero. h è chiamato numero armonico e rappresenta il numero di cicli che fa la RF durante un giro della particella sincrona. Se indichiamo con fs la fase del voltaggio della RF quando la particella sincrona arriva alla cavità RF e confquella della particella generica avremo: • = df = f – fs Rivelatori di Particelle

  18. Lezione 3 Oscillazioni di sincrotrone Il guadagno di energia per giro della particella generica e di quella sincrona sarà (si assume che il voltaggio non cambi quando la particella attraversa la cavità a RF): DU = qV sinf DUs = qV sinfs Se all’ inizio del giro n la differenza in energia della particella generica rispetto alla particella sincrona è (dU)n=U-Us alla fine del giro n sarà: (dU)n+1=(U+DU)-(Us+D Us) Dopo un giro avremo chedU cambia di D(dU)=DU- DUs=qV(sinf-sinfs) Nell’ipotesi di oscillazioni lente possiamo scrivere: Che diventa definendo W=-dU/wrf=-(U-Us)/wrf Rivelatori di Particelle

  19. Lezione 3 Oscillazioni di sincrotrone Sempre nell’ ipotesi di oscillazioni lente dopo un giro abbiamo: D(d/dt)ts=wrfdt Dove dt è la differenza nei tempi di arrivo della particella generica e di quella sincrona alla RF. Dopo un giro dt cambia di: D(dt)=t-ts=dt=-htrt(dp/p)  Dove Derivando rispetto al tempo e sostituendo la dW/dt nella d2/dt2 otteniamo per le oscillazioni di fase della particella generica: Rivelatori di Particelle

  20. Lezione 3 Oscillazioni di sincrotrone Per piccole variazioni della fase possiamo scrivere: ed otteniamo così l’equazione di un oscillatore armonico: Ws è la frequenza delle oscillazioni di sincrotrone. Osserviamo che htrcosfs deve essere positivo per avere frequenze di oscillazione reali e per assicurare la stabilità di fase. Ricordando che per ogni giro si guadagnano pochi MeV nella RF avremo che Ws/ws<<1.(meno di un’oscillazione per giro). Rivelatori di Particelle

  21. Lezione 3 Oscillazioni di Betatrone Abbiamo visto che le particelle vengono mantenute sull’orbita circolare con dei magneti bipolari ed il fascio viene focalizzato tramite l’uso di quadrupoli (e sestupoli per abolire le aberrazioni cromatiche) che funzionano quali lenti convergenti (divergenti).  Oscillazioni anche nel piano trasverso chiamate oscillazioni di betatrone Rivelatori di Particelle

  22. P2 P1 P2 P1 s Lezione 3 Oscillazioni di Betatrone Oscillazioni di btrone. Consideriamo un acceleratore circolare con solamente magneti bipolari. Sul piano orizzontale ho una focalizzazione geometrica (se Bè uniforme e verticale in direzione). P1 dista daP2 ½ circonferenza e la particella fa quindi un’oscillazione completa per giro. (numero di oscillazioni = nx=Q=1). Attenzione: un angolo di deviazione a=1 mrad (rispetto alla particella di riferimento) dà una deviazione =ar (r raggio dell’acceleratore), ma se r=1 km ar=1m  tubo a vuoto enorme ed apertura del magnete enorme. Rivelatori di Particelle

  23. Lezione 3 Oscillazioni di Betatrone Se la deflessione è nel piano // a B, la particella spiralizza e se ne va. Anche con l’inserzione di quadrupoli, le particelle con posizione trasversa o direzione leggermente diverse da quella della particella di riferimento (quella sul piano mediano) fanno un moto oscillatorio attorno alla particella di riferimento (nel piano trasverso xy)  Oscillazioni di betatrone  Inserzione di quadrupoli ( focheggiamento forte) Rivelatori di Particelle

  24. Lezione 3 Oscillazioni di Betatrone Nel caso di un acceleratore circolare a focalizzazione forte le oscillazioni di betatrone sono di frequenza molto maggiore di quelle di sincrotrone ( SPS(CERN) Tsinc 100000 Tbtrone (radiali) ). Inoltre le oscillazioni di betatrone radiali (x) sono disaccoppiate da quelle verticali (y) e da quelle di sincrotrone (longitudinali). Normalmente le oscillazioni di betatrone radiali (x) sono di ampiezza > di quelle verticali, in quanto su quelle radiali influisce anche la dispersione in impulso.  Tubo a vuoto ellittico Rivelatori di Particelle

  25. y x s y’=dy/ds x’=dx/ds Lezione 3 Oscillazioni e stabilità dei fasci Consideriamo il sistema di coordinate: Si puo’ mostrare che: Discorso del tutto analogo per le x. Rivelatori di Particelle

  26. Lezione 3 Oscillazioni e stabilità dei fasci L’equazione: è l’equazione di un’ ellisse di area pR2=pss’ con s es’ = semiassi dell’ellisse. L’ area dell’ellisse è una costante, ma la forma puo’ cambiare al variare di s, in quanto a, b, g dipendono da s. b(funzione di ampiezza) dipende dall’ottica della macchina e b=s/s’ Rivelatori di Particelle

  27. Lezione 3 Oscillazioni e stabilità dei fasci b=s/s’  In un anello di collisione conviene avere b basso, ovvero focalizzare nel punto d’interazione. bI.P.=0.5 m <b>arc=80 m LHC Rivelatori di Particelle

  28. Lezione 3 Emittanza ed accettanza Emittanza: se i punti rappresentativi y ed y’ del 90% delle particelle del fascio sono contenuti in pR0 (area ellisse), pR0 è per definizione l’emittanza del fascio. Abbiamo quindi un’emittanza verticale e radiale che restano costanti. Per definire l’ellisse di area costante abbiamo assunto che l’impulso delle particelle non varia (in modulo) durante il movimento nel piano trasverso. Questo èquasi vero, comunque se varia adiabaticamente (ovvero molto lentamente), l’invariante diventa: Rivelatori di Particelle

  29. Lezione 3 Emittanza ed accettanza Inviluppo delle traiettorie (x o y, x’ o y’)  Fondamentale conoscere yB in quanto determina le dimensioni sia del tubo a vuoto che l’apertura dei magneti, necessarie a far passare il fascio di accettanza nota. y’ L’inviluppo delle traiettorie delle particelle del fascio non è altro che l’ascissa del punto B (quello con la y maggiore) in funzione di s B y’B y yB Rivelatori di Particelle

  30. Lezione 3 Emittanza ed accettanza Accettanza. L’accettanza è per definizione l’emittanza massima accettata dalla camera a vuoto all’iniezione. Accettanze ed emittanze si esprimono in p (mmxmrad) Accettanza tipica di un sincrotrone è: ~ 30 p (mmxmrad) Rivelatori di Particelle

More Related