230 likes | 335 Views
… SANN … Classification …. Classification with Subsequent Artificial Neural Networks Linder, Dew, Sudhoff, Theegarten, Remberger, P Ö ppl, Wagner. Brian Selinsky. Outline. Terminology SANN vs Other ANN approaches SANN vs All Pairs Results. Clustering Dimensionality NN vs. ANN Neuron
E N D
… SANN … Classification … Classification with Subsequent Artificial Neural Networks Linder, Dew, Sudhoff, Theegarten, Remberger, PÖppl, Wagner Brian Selinsky
Outline • Terminology • SANN vs Other ANN approaches • SANN vs All Pairs • Results
Clustering Dimensionality NN vs. ANN Neuron Synapse Thresholds Weights Training Learning Rate Backpropagation Input Standardization Normalization Hidden Layers Approaches MLP One vs All All Pairs SANN Tools Terminology
Clustering O X O X O O X X O X O O X X O X O X O X
Clustering O X O Y X O Y O X X O Y X Y Y O O X X O Y Y X O X Y Y O X Y
Clustering O X O Y X O Y O X X O Y X Y Y O O X X O Y Y X O X Y Y O X Y
Dimensionality • Inputs of interest • Hyperplanes • Dr Frisinas’ data • 4 Clusters • 22690 Inputs of interest • 22690 Dimensional Data • 3 or 4 - 22689 Dimensional Hyperplanes
Dimensionality • Neural Nets convert input dimensionality to 1 number! 1 0 -1
ANN vs. NN • Semantics • Artificial Neural Net • Meant to simulate how the brain functions • Brain is a network of neurons • Brain is the natural neural net • I use NN
Neural Net Class 1 Neural Net Black Box (Some magic happens here) Class 2 Class 3
Neuron Neural Net Class 1 Calculate Summation Compare to Threshold Class 2 Class 3
C1 C T C2 C3 Neural Network N Neural Net N N N N N N
C1 C T C2 C3 Neural Network Inputs & Processing N Neural Net N N N N N N Learning
C1 C T C2 C3 Training Inputs & Processing N Neural Net Training Set N N N N N N Learning
What gets trained • Threshold • Categorization • Weight • Impact of an input to a neuron • Proportionality • Learning Rate • Effect on weights • Effect on speed of training
C1 C T C2 C3 How? - Backpropagation Inputs & Processing N Neural Net Training Set N N N N N N Learning
Input Data • Data 1 Range 12000 – 500000 • Data 2 Range 1.0 – 1.5 • Standardizing or normalizing data makes weights more consistent and more accurate
Approaches • Multi-layer Perceptron (MLP) • Subdividing the problem • One vs. All • All Pairs • SANN
One vs. All Class A ANN Not Class A ANN Class B Not Class B Class C ANN Not Class C
All Pairs Class A ANN Class A Class B Class C Class A ANN Class C Class B Class B ANN Class C
SANN ANN A vs B Class A .12 ANN Class B .88 Class C .91 ANN A vs C Class B .90 ANN B vs C Final Values Class A .12 Class B .90 Class C .89 Class C .89
Results • Increased data & nodes • Increased noise • Subdividing NNs increases accuracy • All Pairs vs SANN • All Pairs more accurate • SANN faster
Tools (FYI) • MatLab (Neural Network Toolbox) • On CS System (Unix and Windows) • NeuroSolutions • 60 day free trial (Windows) • Joone • Free (Platform Independent)