380 likes | 606 Views
UNIVERSITA’ DI MILANO-BICOCCA LAUREA MAGISTRALE IN BIOINFORMATICA. Corso di BIOINFORMATICA: TECNICHE DI BASE Prof. Giancarlo Mauri Lezione 7 Allineamento di sequenze. Allineamento globale di sequenze. Cos’è un allineamento globale?
E N D
UNIVERSITA’ DI MILANO-BICOCCALAUREA MAGISTRALE IN BIOINFORMATICA Corso di BIOINFORMATICA: TECNICHE DI BASE Prof. Giancarlo Mauri Lezione 7 Allineamento di sequenze
Allineamento globale di sequenze Cos’è un allineamento globale? Date due sequenze S = s1s2…sn e T = t1t2…tm sull’alfabeto S, un allineamento (globale) di S e T consiste in una coppia di sequenze S’ = s’1s’2…s’l e T’ = t’1t’2…t’l sull’alfabeto SU{} (con carattere di spazio), che godono delle seguenti proprietà: • S’ = T’ = l (max(n,m) ≤ l ≤ (m+n)) • Eliminando gli spazi da S’ si ottiene S • Eliminando gli spazi da T’ si ottiene T • Se s’i = , allora t’i ≠ e viceversa
ttcgagccttagcgta S ttatagcgtagtcgta T ttc-gagccttag-cgta S’ ttat-agcg-tagtcgta T’ Allineamento globale: esempio Mismatch Cancellazione in T o inserzione in S Match Cancellazione in S o inserzione in T
Allineamento globale • Rispetto alla distanza di edit, massimizza la similarità anziché minimizzare la differenza • La distanza di edit è riconducibile ad esso • Tecniche utilizzate: • Analisi di dot matrix (dotplot) • Algoritmi di Programmazione Dinamica • Metodi euristici (FASTA, BLAST)
Esempio Senza gap: punteggio 10 IPLMTRWDQEQESDFGHKLPIYTREWCTRG CHKIPLMTRWDQQESDFGHKLPVIYTREW Con gap:punteggio 25 IPLMTRWDQEQESDFGHKLP IYTREWCTRG CHKIPLMTRWDQQESDFGHKLPVIYTREW
Allineamento pesato Cos’è una matrice di punteggio? Matrice che assegna ad ogni coppia di caratteri (a,b)({-})2un punteggio d che esprime il costo (o il beneficio) della sostituzione del simbolo a col simbolo b. Punteggio A dell’allineamento S’, T’
Allineamento globale : il problema INPUT: due sequenze S e T definite su un alfabeto Seuna matrice di punteggiod: ({-})2 R OUTPUT: un allineamento (S’, T’) tra S e T il cui punteggio A sia minimo (o massimo) NB: Se d(a,b) esprime un costo, A è da minimizzare. Se d(a,b) esprime un beneficio, A è da massimizzare
Allineamento globale con indels • Inserimenti e cancellazioni (indels) sono necessari per allineare accuratamente sequenze anche molto simili come le e globine • L’approccio ingenuo per trovare l’allineamento ottimo di due sequenze con indels consiste nel generare tutti i possibili allineamenti, sommare i punteggi per ogni coppia di simboli corrispondenti in ogni allineamento e scegliere quello di punteggio massimo. • Questa idea è praticamente irrealizzabile anche per sequenze corte (anche solo di 100 caratteri).
Algoritmo di Needleman-Wunsch (1970) Si considerino le sequenze S = s1s2…sn e T = t1t2…tm Sia A(i,j) il costo dell’allineamento tra il prefisso s1s2…sie il prefisso t1t2…tj. Si hanno tre possibilità: • il carattere si si allinea con il carattere tj e quindi: A(i,j) = A(i-1,j-1) + d(si,tj) • il carattere si si allinea con uno spazio e quindi: A(i,j) = A(i-1,j) + d(si,-) • il carattere tj si allinea con uno spazio e quindi: A(i,j) = A(i,j-1) + d(-, tj) Si considerino le sequenze S=s1s2…sn e T=t1t2…tm Sia A(i,j) il costo dell’allineamento tra il prefisso s1s2…si e il prefisso t1t2…tj. Si hanno tre possibilità: • il carattere si si allinea con il carattere tj e quindi: A(i,j) = costo allineamento tra i prefissi s1s2…si-1 e t1t2…tj-1 + d(si,tj) • il carattere si si allinea con uno spazio e quindi: A(i,j) = costo allineamento tra i prefissi s1s2…si-1 e t1t2…tj + d(si,-) • il carattere tj si allinea con uno spazio e quindi: A(i,j) = costo allineamento tra i prefissi s1s2…si e t1t2…tj-1 + d(-,tj) d(si,tj)=0 se si uguale a tj,
A(i-1,j-1) + d(si,tj) A(i-1,j) + d(si,-) A(i,j-1) + d(-,tj) A(i,j) = min Algoritmo di Needleman-Wunsch Se si vuole un valore minimo, si ottiene la ricorrenza che stabilisce un legame tra il generico sottoproblema A(i,j) e i sottoproblemi A(i-1,j-1), A(i-1,j) e A(i,j-1)
Algoritmo di Needleman-Wunsch I casi base, per i quali il valore di A è immediatamente calcolabile, sono: • A(0,0) = 0 • A(i,0) = Sik=1d(sk,-) per 0<i<n • A(0,j) = Sik=1d(-,tk) per 0<j<m Il costo dell’allineamento tra S e T è A(n,m)
Le matrici di punteggio Esempi di matrice di punteggio • d(x,x) = 1, d(-,x) = d(x,-) = -a, d(x,y) = -u • Se a = 0, u = LCS (LongestCommonSubsequence) • PAM oppure BLOSUM per le proteine
Le matrici di punteggio Matrice transizione trasversione Matrice identità Matrice BLAST
D(i-1,j-1) + d(si,tj) D(i-1,j) + d(si,-) D(i,j-1) + d(-,tj) D(i,j) = min Calcolo della distanza di edit La distanza di edit può essere ricondotta ad un problema di allineamento globale d(si,tj)=0 per si=tj d(si,tj)=1 per sitj d(si,-)=d(-,tj)=1j
Matrici PAM (Point Accepted Mutations) • Sono utilizzate per il confronto di sequenze proteiche • Sono derivate dalla frequenza con cui un aminoacido sostituisce un altro in sequenze evolutivamente correlate • Le mutazioni accettate non hanno causato l’eliminazione dell’organismo • Sono evidenziate allineando proteine omologhe in specie diverse (es. emoglobina alfa in uomo e orango)
Matrici PAM (Point Accepted Mutations) • PAM1: • Matrice corrispondente a distanza evolutiva 1 (1% di mutazioni) • PAMn: • Matrice corrispondente a distanza evolutiva n, PAM1n • La matrice di punteggio S è calcolata a partire da una matrice di probabilità di transizione M
Il calcolo di PAM 1 • pa, probabilità di occorrenza dell’aminoacido a in un insieme abbastanza ampio di sequenze proteiche • fa,b=fb,a numero di mutazioni a b accettate • fa = fa,b • f = fa (doppio del numero di mutazioni) • Ma,b = prob. che a cambi in b (anche per a=b) • Ma,a è calcolata partendo dalla mutabilità relativa di a: • ma = fa/100fpa • Ma,a = 1 - ma • Ma,b = fa,b * ma/fa
BLOSUM 50 A R N D C Q E G H I L K M F P S T W Y V A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0 R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3 D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3 E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3 G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4 H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4 I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4 L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1 K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3 M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1 F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1 P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 S 1 -1 1 0 -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0 W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3 Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1 V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5
Schemi di peso per i gap • Linearscore • f(g)= -gd con d gap-openpenalty e g lunghezza del gap • Un peso dei gap dipendente dalla sola lunghezza comporta che due gap isolati diano lo stesso costo di due consecutivi • Affinescore • f(g)= -d –(g-1)e con d gap-openpenalty, e gap-extensionpenalty e g lunghezza del gap • Modello di transizione da una sequenza all’altra biologicamente più significativo, dal momento che inserzioni e cancellazioni di più di un residuo non sono eventi poco comuni tra sequenze proteiche omologhe
Globale: l’intera sequenza viene allineata Locale:solo frammenti della sequenza vengono allineati Allineamento globale vs locale L’allineamento di due o più sequenze può essere globale o locale
Allineamento locale: esempio LTGARDWEDIPLWTDWDIEQESDFKTRAFGTANCHK TGIPLWTDWDLEQESDNSCNTDHYTREWGTMNAHKA LTGARDWEDIPLWTDWDIEQESDFKTRAFGTANCHK TGIPLWTDWDLEQESDNSCNTDHYTREWGTMNAHKA
Allineamento locale E’ meglio avere molte coincidenze sparse o averne meno, ma concentrate? Allineamento locale Date S e T trovare due sottostringhe v e w di S e T rispettivamente la cui similarità (allineamento ottimo) sia massima su tutte le coppie di sottostringhe di S e T.
Allineamento locale: esempio S= pqraxabcstvq T=xyaxbacsll axab-cs ax-bacs Con il seguente punteggio: - d(x,x) = 2 - d(x,y) = -2 - d(x,-) = -1 si ottiene uno score pari a 8
Quando e perché l’allineamento locale? • Confronto sequenze DNA “anonimo”, per individuare sottostringhe collegate • Individuazione subunità strutturali comuni a proteine diverse • …
Considerazioni di complessità • Ci sono (n2 m2) coppie di sottostringhe • L’allineamento locale può tuttavia essere calcolato in tempo O(nm) come quello globale
Algoritmo di Smith-Waterman Date due sequenze S e T (di lunghezza m e n): • Si costruisce una matrice A di dimensione (m+1)x(n+1) in cui A(i,j) è il costo di un allineamento tra il suffisso (eventualmente vuoto) S[1,i] e il suffisso T[1,j] • Si inizializza la prima riga e la prima colonna di A a zero • La ricorrenza è derivata da quella dell’allineamento globale, con l’aggiunta di 0 come valore minimo: A(i,j) = max{0, A(i-1,j) + d(si,-); A(i,j-1)+d(-,tj); A(i-1,j-1)+d(si,tj)}
One example of local dynamic programming using a linear score for gaps and Blosum50
Strategie euristiche per l’allineamento di sequenze in ricerche in database: tempi a confronto
Ricerca con Mega BLAST Mega BLAST uses the greedy algorithm for nucleotide sequence alignment search. This program is optimized for aligning sequences that differ slightly as a result of sequencing or other similar "errors". When larger word size is used (see explanation below), it is up to 10 times faster than more common sequence similarity programs. Mega BLAST is also able to efficiently handle much longer DNA sequences than the blastn program of traditional BLAST algorithm.
Costruzione del profilo di una sequenza Allineamento Multiplo
La struttura di PSI-BLAST • PSI-BLAST takes as input a protein sequence and compares it to a protein database, using the gapped BLAST program • The program constructs a multiple alignment, and then a profile, from any significant local alignment found. The original query sequence serves as a template for the multiple alignment and profile, whose lengths are identical to that of the query. Different numbers of sequences can be aligned in different template positions • The profile is compared to the protein database, again seeking local alignments. After a few minor modifications, the BLAST algorithm can be used for this directly. • PSI-BLAST estimates the statistical significance of the local alignments found. Because profile substitution scores are constructed to a fixed scale, and gap scores remain independent of position, the statistical theory and parameters for gapped BLAST alignments remain applicable to profile alignments. • Finally, PSI-BLAST iterates, by returning to step (2), an arbitrary number of times or until convergence.