1 / 32

6 a lezione - laboratorio

6 a lezione - laboratorio. Corso di Laurea ING. MECCANICA. a.a 2004-2005. La scatola dei co lori. Avevo una scatola di colori Ogni colore splendeva di gioia Avevo una scatola di colori Caldi e delicati e vivi. Non avevo il rosso per le ferite e per il sangue,

raziya
Download Presentation

6 a lezione - laboratorio

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6a lezione - laboratorio Corso di Laurea ING.MECCANICA a.a 2004-2005

  2. La scatoladeicolori Avevo una scatola di colori Ogni colore splendeva di gioia Avevo una scatola di colori Caldi e delicati e vivi. Non avevo il rosso per le ferite e per il sangue, Non avevo il nero per l’orfano, Non avevo il bianco per il viso dei morti, Non avevo il giallo per le sabbie infuocate, Avevo l’arancione per la gioia e per la vita, Avevo il verde per germogli e fioriture, Avevo il blu per limpidi cieli azzurri, Avevo il rosa per i sogni e per il riposo. Mi sedetti e dipinsi La PACE Tali Shurek

  3. Esercizio 1 Data l’equazione: Si verifica facilmente che x = 0 è soluzione. b) Senza preoccuparsi delle ipotesi di convergenza, si approssimi tale soluzione, applicando il metodo di Newton e quello di bisezione per 15 iterazioni. c) Fare le dovute considerazioni.

  4. Punto b: metodo di Newton x0=-1; nmax=15; toll=1e-12; fun='sin(x)-0.5*sin(2*x)'; dfun='cos(x)-cos(2*x)'; [xvect,xdiff,fx,it,p,c]=newton(x0,nmax,toll,fun ,dfun); Superato il numero massimo di iterazioni Numero di Iterazioni : 15 Radice calcolata : -1.9309205276636407e-003 Ordine stimato : 0.9999897626825431 Fattore di riduzione : 0.6666198373211456

  5. Tabella riassuntiva - Newton iter=0:it; fprintf('%2d %23.15e %15.3e %15.3e\n',[iter' xvect xdiff fx]') 0 -1.000000000000000e+000 0.000e+000 3.868e-001 1 -5.955642027988763e-001 4.044e-001 9.658e-002 2 -3.843266909954277e-001 2.112e-001 2.735e-002 3 -2.529596248184762e-001 1.314e-001 7.965e-003 4 -1.677278487209687e-001 8.523e-002 2.343e-003 5 -1.115548118641202e-001 5.617e-002 6.920e-004 6 -7.429254153014103e-002 3.726e-002 2.047e-004 7 -4.950555324952729e-002 2.479e-002 6.063e-005 8 -3.299695812958521e-002 1.651e-002 1.796e-005 9 -2.199597566746803e-002 1.100e-002 5.320e-006 10 -1.466339248533952e-002 7.333e-003 1.576e-006 11 -9.775419823703882e-003 4.888e-003 4.671e-007 12 -6.516894652077655e-003 3.259e-003 1.384e-007 13 -4.344581058363196e-003 2.172e-003 4.100e-008 14 -2.896382816341328e-003 1.448e-003 1.215e-008 15 -1.930920527663641e-003 9.655e-004 3.600e-009 >> xvect ci mostra la lenta convergenza.

  6. Punto b: metodo di bisezione a=-1;b=1; nmax=15; toll=1e-12; fun='sin(x)-0.5*sin(2*x)'; [xvect,xdiff,fx,it,p,c]=bisezione(a,b,nmax,toll ,fun); Superato il numero massimo di iterazioni Numero di Iterazioni : 15 Radice calcolata : -6.1035156250000000e-005 Ordine stimato : 1.0000000000000000 Fattore di riduzione : 0.5000000000000000

  7. Tabella riassuntiva - bisezione iter=1:it; fprintf('%2d %23.15e %15.3e %15.3e\n',[iter' xvect xdiff fx]') 1 0.000000000000000e+000 5.000e-001 0.000e+000 2 -5.000000000000000e-001 2.500e-001 5.869e-002 3 -2.500000000000000e-001 1.250e-001 7.691e-003 4 -1.250000000000000e-001 6.250e-002 9.728e-004 5 -6.250000000000000e-002 3.125e-002 1.220e-004 6 -3.125000000000000e-002 1.563e-002 1.526e-005 7 -1.562500000000000e-002 7.813e-003 1.907e-006 8 -7.812500000000000e-003 3.906e-003 2.384e-007 9 -3.906250000000000e-003 1.953e-003 2.980e-008 10 -1.953125000000000e-003 9.766e-004 3.725e-009 11 -9.765625000000000e-004 4.883e-004 4.657e-010 12 -4.882812500000000e-004 2.441e-004 5.821e-011 13 -2.441406250000000e-004 1.221e-004 7.276e-012 14 -1.220703125000000e-004 6.104e-005 9.095e-013 15 -6.103515625000000e-005 3.052e-005 1.137e-013 >>

  8. Confronto tra i due metodi Newton Iter xvect xdiff fx .... 15 -1.930920527663641e-003 9.655e-004 3.600e-009 Bisezione Iter xvect xdiff fx .... 15 -6.103515625000000e-005 3.052e-005 1.137e-013 Il valore ottenuto con la bisezione è più vicino alla soluzione vera x = 0!!!

  9. Motivo di tale comportamento? Newton Numero di Iterazioni : 15 Radice calcolata : -1.9309205276636407e-003 Ordine stimato : 0.9999897626825431 Fattore di riduzione : 0.6666198373211456 Bisezione Numero di Iterazioni : 15 Radice calcolata : -6.1035156250000000e-005 Ordine stimato : 1.0000000000000000 Fattore di riduzione : 0.5000000000000000

  10. La radice è multipla? x = 0 è radice multipla con molteplicità m = 3.

  11. Grafico di f ( x ) Anche il grafico mostra che la radice x=0 è multipla fplot('sin(x)-0.5*sin(2*x)’,[-1,1]) grid title('Andamento di f(x)= sin(x)- 0.5*sin(2*x)')

  12. Modifica metodo di Newton: m noto x0=-1; nmax=15; toll=1e-12; fun='sin(x)-0.5*sin(2*x)'; dfun='cos(x)-cos(2*x)'; mol=3; [xvect,xdiff,fx,it,p,c]=newton_m(x0,nmax,toll, fun,dfun,mol); Arresto per azzeramento di dfun Iter xvect xdiff fx .... 3 7.266362938868759e-010 1.634e-003 0.000e+000

  13. Modifica del problema: L’applicazione del metodo di Newton al problema implica: fun='(sin(x)-0.5*sin(2*x))./(cos(x)-cos(2*x))'; dfun='1-((sin(x)-0.5*sin(2*x)).*(-sin(x)+2*… sin(2*x)))./(cos(x)-cos(2*x)).^2';

  14. Metodo di Newton (*): risultati [xvect,xdiff,fx,it,p,c]=newton(x0,nmax,toll,fun,dfun); Warning: Divide by zero. > In C:\analisi_numerica\prog_matlab_new\eq_non_lin\NEWTON.M at line 70 Warning: Divide by zero. > In C:\analisi_numerica\prog_matlab_new\eq_non_lin\NEWTON.M at line 62 Numero di Iterazioni : 5 Radice calcolata : NaN Iter xvect xdiff fx 0 -1.000000000000000e+000 0.000e+000 4.044e-001 1 -3.108031246559614e-001 6.892e-001 1.053e-001 2 -9.943189700371891e-003 3.009e-001 3.314e-003 3 -3.276824228314046e-007 9.943e-003 1.092e-007 4 -1.029850733179902e-010 3.276e-007 NaN 5 NaN NaN NaN

  15. Semplificazione della F ( x ) Poiché:

  16. Grafico di F(x) fplot('sin(x)/(1+2*cos(x))’,[-1,1]) grid title(‘F(x)=sin(x)/(1+2*cos(x))’)

  17. Grafico di F’(x) fplot('(cos(x)+2)/(1+2*cos(x))^2’,[-1,1]) grid title(‘DF(x)=(cos(x)+2)/(1+2*cos(x))^2’)

  18. Grafico di F’’(x) La derivata seconda non ha segno costante per la convergenza del metodo di Newton occorre prendere vicino alla soluzione!! fplot('(7+2*cos(x)) *sin(x)/(1+2*cos(x))^3',[-1,1]) grid title('F''''(x)= (7+2*cos(x)) *sin(x)/(1+2*cos(x))^3)')

  19. Risultati del problema modificatometodo Newton (*) x0=0.7; fun='sin(x)./(1+2*cos(x))'; dfun='(cos(x)+2)./(1+2*cos(x)).^2'; [xvect,xdiff,fx,it,p,c]=newton(x0,nmax,toll,fun,dfun); Numero di Iterazioni : 5 Radice calcolata : 0.0000000000000000e+000 Ordine stimato : 3.0020776453233839 Fattore di riduzione : 0.3387128554185560 x0=-0.8; [xvect,xdiff,fx,it,p,c]=newton(x0,nmax,toll,fun,dfun); Numero di Iterazioni : 5 Radice calcolata : 0.0000000000000000e+000 Ordine stimato : 3.0052937675224145 Fattore di riduzione : 0.3450700538122051

  20. Utilizzo della function ‘fzero’ di Matlab >> alfa=fzero('(x^2-4)*cos(x)+4*x*sin(x)',0.8) alfa = 8.052563483762232e-001 >> options=optimset('Tolx',1e-15); >> x=fzero('sin(x)-0.5*sin(2*x)',-0.1,options) x = 1.050493220693351e-008 Il risultato è meno preciso!!

  21. Esercizio 2: Sistema non lineare Dato il sistema non lineare : a) separare graficamente le soluzioni; b) utilizzare il metodo di punto fisso per approssimare la soluzione situata nel primo quadrante; c) applicare quindi il metodo di Newton per risolvere lo stesso problema. d) Confrontare i risultati ottenuti nei due casi.

  22. Punto a: separazione grafica Circonferenza:C=(0,2),R = 2 Parabola simm.rispetto l’asse x fplot('2-sqrt(4-x^2)', [0,2]),grid hold on fplot('2+sqrt(4-x^2)', [0,2]) fplot('sqrt(x)',[0,4]), hold off %y=0:.01:4; %x2=0:.01:4; %x1=sqrt(-%y.^2+4*y); %y2=sqrt(x2); %plot(x1,y,x2,y2),grid La soluzione D = [1,2] x [1,2]

  23. Grafico di F( x) in [1,2] x [1,2] fplot('2-sqrt(4-x^2)', [1,2]),grid hold on fplot('2+sqrt(4-x^2)', [1,2]) fplot('sqrt(x)',[1,2]) axis([1 2 1 2]) hold off

  24. Punto b: metodo di punto fisso Convergenza del metodo di punto fisso

  25. Verifica delle ipotesi: Hp.1, Hp.2 Hp.1 Le funzioni g1 crescente g2 è anche crescente

  26. Verifica delle ipotesi: Hp. 3 Il metodo di punto fisso converge!!

  27. Istruzioni metodo punto fisso x0=[1 1]; nmax=30; toll=1.e-6; fun=strvcat('x(1)^2+x(2)^2-4*x(2)', '-x(1)+x(2)^2'); % x,y sono in x(1),x(2) g=strvcat('sqrt(4*x(2)-x(2)^2)','sqrt(x(1))'); [xvect,xdiff,fx,it]=Punto_fissoxs(x0,nmax,toll, fun,g); .... while (it<nmax) & (norm(res_x,inf)>=toll) xap=x; for k=1:n x_new(k)=eval(g(k,:)); % x(k)=x_new(k); % da aggiungere per avere la % soluzione con metodo in serie end x=xap; ....

  28. Risultati e tabella: metodo inparallelo Numero di iterazioni : 15 Radice calcolata: 1.9010802796691053e+000 1.3787965146159946e+000 iter=0:it; tab=[iter' xvect xdiff fx]; fprintf('%2d %19.15f %19.15f %13.3e %13.3e\n', tab') it soluzione xdiff fx 0 1.000000000000000 1.000000000000000 0.000e+000 2.000e+000 1 1.732050807568877 1.000000000000000 7.321e-001 7.321e-001 2 1.732050807568877 1.316074012952492 3.161e-001 5.322e-001 .... .... .... .... .... 14 1.901079828717214 1.378796514615995 1.380e-006 1.715e-006 15 1.901080279669105 1.378796514615995 4.510e-007 4.510e-007

  29. Risultati e tabella: metodo in serie Numero di iterazioni : 8 % sono di meno! Radice calcolata: 1.9010802796691053e+000 1.3787966781469649e+000 it soluzione xdiff fx 0 1.000000000000000 1.000000000000000 0.000e+000 2.000e+000 1 1.732050807568877 1.316074012952492 7.321e-001 5.322e-001 2 1.879426839289333 1.370921893941932 1.474e-001 7.202e-002 3 1.898489066726062 1.377856693102030 1.906e-002 8.677e-003 4 1.900772923229405 1.378685215424248 2.284e-003 1.030e-003 5 1.901043907559104 1.378783488282009 2.710e-004 1.221e-004 6 1.901076023090326 1.378795134561450 3.212e-005 1.447e-005 7 1.901079828717214 1.378796514615995 3.806e-006 1.715e-006 8 1.901080279669105 1.378796678146965 4.510e-007 2.032e-007

  30. Punto c: metodo di Newton Indichiamo: Hp. La soluzione del sistema:

  31. Istruzioni metodo di Newton x0=[1 1]; nmax=30; toll=1.e-6; fun=strvcat('x(1)^2+x(2)^2-4*x(2)', '-x(1)+x(2)^2'); Jac=strvcat('2*x(1)','2*x(2)-4','-1','2*x(2)'); % Jacobiana in forma di vettore di stringhe [xvect,xdiff,fx,it]=newtonxs(x0,nmax,toll,fun, Jac); Numero di iterazioni : 6 % Sono in numero < 8!! Radice calcolata: 1.9010803402881398e+000 1.3787967001295518e+000

  32. Tabella riassuntiva del metodo di Newton iter=0:it; tab=[iter' xvect xdiff fx]; fprintf('%2d %19.15f %19.15f %13.3e %13.3e\n’, tab') it soluzione xdiff fx 0 1.000000000000000 1.000000000000000 0.000e+000 2.000e+000 1 3.000000000000000 2.000000000000000 2.000e+000 5.000e+000 2 2.166666666666667 1.541666666666667 8.333e-001 9.045e-001 3 1.927083333333333 1.395833333333333 2.396e-001 7.867e-002 4 1.901399523614772 1.379015003483898 2.568e-002 9.425e-004 5 1.901080391293387 1.378796735902042 3.191e-004 1.495e-007 6 1.901080340288140 1.378796700129552 5.101e-008 2.665e-015

More Related