1 / 30

Probabilistic Sensitivity Measures Wes Osborn Harry Millwater

Probabilistic Sensitivity Measures Wes Osborn Harry Millwater Department of Mechanical Engineering University of Texas at San Antonio TRMD & DUST Funding. Objectives. Compute the sensitivities of the probability of fracture with respect to the random variable parameters, e.g., median, cov

sidney
Download Presentation

Probabilistic Sensitivity Measures Wes Osborn Harry Millwater

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Probabilistic Sensitivity Measures Wes Osborn Harry Millwater Department of Mechanical EngineeringUniversity of Texas at San Antonio TRMD & DUST Funding

  2. Objectives • Compute the sensitivities of the probability of fracture with respect to the random variable parameters, e.g., median, cov • No additional sampling • Currently implemented: • Life scatter (median, cov) • Stress scatter (median, cov) • Exceedance curve (amin, amax) • Expandable to others

  3. Probabilistic Sensitivities • Three sensitivity types computed • Zone • Conditional - based on Monte Carlo samples • SS, PS, EC • Unconditional - based on conditional results • SS, PS, EC • Disk • Stress scatter - one result for all zones • Exceedance curve - one result for all zones using a particular exceedance curve (currently one) • Life scatter - different for each zone 95% confidence bounds developed for each

  4. Conditional Probabilistic Sensitivities • Enhance existing Monte Carlo algorithm to compute probabilistic sensitivities (assumes a defect is present)

  5. Conditional Probabilistic Sensitivities • BT - Denotes Boundary Term needed if perturbing the parameter changes the failure domain, e.g., amin, amax Thus the boundary term is f(amax). This term is an upper bound to the true BT in N dimensions

  6. Conditional Probabilistic Sensitivities • Example lognormal distribution Sensitivity with respect to the Median Sensitivity with respect to the Coefficient of Variation (stdev/mean)

  7. Sensitivity with Respect to Median,

  8. Sensitivity with Respect to Coefficient of Variation,

  9. Sensitivities of Exceedance Curve Bounds • Perturb bounds assuming same slope at end points

  10. Sensitivity with Respect to assumes BT is zero

  11. Sensitivity with Respect to Assumes BT is f(amax)

  12. Zone Sensitivities number of zones affected by Partial derivative of probability of fracture of zone with respect to parameter

  13. Disk Sensitivities number of zones affected by Partial derivative of probability of fracture of disk with respect to parameter

  14. Procedure • For every failure sample: • Evaluate conditional sensitivities • Divide by number of samples • Add boundary term to amax sensitivity • Estimate confidence bounds • Results per zone and for disk

  15. DARWIN Implementation • New code contained in sensitivities_module.f90 zone_risk accumulate_pmc_sensitivities accrue expected value results compute_sensitivities_per_pmc compute_sensitivities_per_zone write_sensitivities_per_zone zone_loop sensitivities_for_disk write_disk_sensitivities

  16. Application Problem #1 • The model for this example consists of the titanium ring outlined by advisory circular AC-33.14-1 subjected to centrifugal loading • Limit State:

  17. Loading

  18. Model Titanium ring 24-Zones

  19. Random Variable

  20. Results

  21. Contd…

  22. Application Problem #2 • Consists of same model, loading conditions, and limit state • In addition to the defect distribution, random variables Life Scatter and Stress Multiplier have been added

  23. Random Variable Definitions

  24. Results

  25. Contd…

  26. Conclusion • A methodology for computing probabilistic sensitivities has been developed • The methodology has been shown in an application problem using DARWIN • Good agreement was found between sampling and numerical results

  27. Example - Sensitivities wrt amin • 14 zone AC test case • Sensitivities of the conditional POF wrt amin

  28. Probabilistic Sensitivities • Sensitivities for these distributions developed • Normal (mean, stdev) • Exponential (lambda, mean) • Weibull (location, shape, scale) • Uniform (bounds, mean, stdev) • Extreme Value – Type I (location, scale, mean, stdev) • Lognormal Distribution (COV, median, mean, stdev) • Gamma Distribution (shape, scale, mean, stdev) Sensitivities computed without additional sampling

  29. Exceedance Curve

  30. Probabilistic Model Probability of Fracture per Zone Probability of Fracture of Disk

More Related