1 / 73

PROBABILITA’ E TEST DIAGNOSTICI

PROBABILITA’ E TEST DIAGNOSTICI. IL TEST E’ POSITIVO.

warner
Download Presentation

PROBABILITA’ E TEST DIAGNOSTICI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PROBABILITA’ E TEST DIAGNOSTICI IL TEST E’ POSITIVO..

  2. In tutti quei casi in cui le manifestazioni di un fenomeno (EVENTI) non possono essere determinate a priori in modo univoco, e i risultati possono essere oggetto di discussione e di valutazioni diverse, la “Probabilità” è strumento “fondamentale”. La “Probabilità” consiste in una valutazione numerica associata alla previsione del un risultato di un esperimento o di una prova, che può dar luogo a diversi risultati (Esperimento Aleatorio)

  3. L’EVENTO E’ L’ELEMENTO DI BASE AL QUALE PUO’ ESSERE APPLICATA UNA PROBABILITA’, ESSO E’ IL RISULTATO DI UN’OSSERVAZIONE O DI UN ESPERIMENTO

  4. EVENTO (E, F, A..) : è un qualsiasi sottoinsieme (collezione di possibili esiti) dello spazio S. Si dice che un evento si verifica se l’esito dell’esperimento è incluso nella definizione data di evento SPAZIO DEGLI EVENTI (S): l’insieme di tutti i possibili esiti di un esperimento (serie di prove con esiti non prevedibili) Evento certo (S) = (E) + (Ē)

  5. Lo spazio degli eventi (S) è composto da tutti i possibili esiti di un esperimento: • Eventi semplici • Eventi composti (combinazioni di eventi semplici) • Evento Certo (S) • Evento impossibile (Ø)

  6. ES: Risultati possibili nel duplice lancio di una moneta S = {(testa, testa), (testa, croce), (croce, testa), (croce, croce)} • E (evento semplice) = {(testa, croce)} • E (evento composto) =1 testa = {(testa, croce), (croce, testa)} • Ē = (evento complementare di E) ={(testa, testa), (croce, croce)}

  7. S 1 2 3 4 5 6 Lancio di un dado: S: Eventi Semplici (A, B, C, D, E, F) : esce 1, esce 2, esce 3, esce 4, esce 5, esce 6 Eventi composti (X, Y): esce un numero pari, esce un numero dispari…. Evento certo: esce un numero da 1 a 6 Evento impossibile: esce 7

  8. POSSIBILI OPERAZIONI SU EVENTI • L’unione di due eventi A e B (A  B), definita come l’insieme degli esiti che appartengono o all’evento A o all’evento B o simultaneamente ad A e B. • L’intersezionedi due eventi A e B (AB), definita dall’insieme degli esiti che verificano contemporaneamente A e l’evento B • Il complemento di un evento E, indicato con “Ē ” che rappresenta l’evento “non E”, ed è dato da S-E

  9. LO STRUMENTO GRAFICO UTILIZZATO PER RAPPRESENTARE RELAZIONI SEMPLICI E COMPLESSE TRA PIU’ EVENTI E’ IL DIAGRAMMA DI VENN

  10. S S A A B B S DIAGRAMMA DI VENN Unione Intersezione In questo caso i 2 eventi si dicono MUTUALMENTE ESCLUSIVI ovvero non possono accadere simultaneamente, gli eventi non hanno esiti in comune INTERSEZIONE = INSIEME VUOTO A Maschio B Femmina

  11. ESERCIZIO Disegnate 3 insiemi tra loro parzialmente sovrapposti (diagramma di Venn) che rappresentino graficamente le seguenti 3 popolazioni: i maschi, coloro che fumano, coloro che hanno un’età compresa tra i 15 e i 20 anni Si definiscano graficamente le seguenti popolazioni: - le femmine fumatrici - coloro che fumano ed hanno tra i 15 e 20 anni M 15/20 Fum

  12. La probabilità P(.) è una misura che associa ad ogni evento “E” un valore numerico “P(E)” che esprime l’incertezza relativa al verificarsi dell’evento P(s) s P(.)

  13. DEFINIZIONI DI PROBABILITA’ • Definizioni Classica • Definizione Frequentista • Definizione Soggettivista

  14. Definizione Classica Se un esperimento può dar luogo ad n esiti tutti egualmente possibili, e se m di questi esiti hanno l’attributo A, si definisce come probabilità dell’evento A la seguente espressione: P(A) = m/n =casi favorevoli / casi possibili Esempio: Supponiamo di avere un urna con 25 palline colorate, 10 bianche, 7 verdi e 8 rosse: La probabilità di estrarre una pallina bianca sarà 10/25

  15. - L’approccio Classico, o matematico, è il primo che si è affermato, in quanto particolarmente appropriato ai giochi d’azzardo Al di fuori del campo di applicazione dei giochi d’azzardo è difficile trovare situazioni in cui tutti gli esiti di un esperimento casuale possano considerarsi equamente probabili Per esempio, cosa dire dell’esito della somministrazione di un farmaco ad un paziente? Nulla può, a priori, giustificare l’attribuzione ai due possibili esiti dell’esperimento (guarire/non guarire) di un’uguale probabilità. In tali situazioni è possibile associare un valore di probabilità solo provando e riprovando l’esperimento in condizioni costanti.

  16. Definizione Frequentista Se un esperimento è ripetuto n volte in condizioni sostanzialmente identiche, e se A, un suo possibile evento, si verifica m volte, all’aumentare di n, il rapporto m/n si avvicina ad un limite fisso che è la probabilità di A P(A) =lim (m/n) n→∞ !!Si può così ricavare un valore di probabilità come limite cui tende la proporzione di volte in cui l’evento si realizza

  17. Se un esperimento viene ripetuto molte volte la probabilità di un evento, stimata tramite la frequenza relativa, tende ad avvicinarsi alla vera probabilità di quell’evento. In pratica una stima della probabilità basata su poche ripetizioni è INACCURATA, ma via via che il numero di tentativi cresce la stima della probabilità diventa sempre più precisa

  18. Definizione soggettivista Nella realtà scientifica sono inclusi fenomeni che non possono essere ricondotti a condizioni di ripetibilità e equiprobabilità , perché considerati eventi unici o irripetibili. Per questi fenomeni, sia l’approccio classico che quello frequentista falliscono. Per rispondere a domande del tipo: qual è la probabilità che ... - ... avvenga una catastrofe - ... una specie animale o vegetale si estingua Si deve ricorrere alla definizione Soggettivista di probabilità: Sia dato un esperimento e sia C un suo possibile esito, la probabilità dell’evento C è un valore che esprime quanto un individuo “crede” nel fatto che l’evento C si verifichi. P(E)= grado di fiducia accordato al verificarsi dell’evento stesso

  19. PROPRIETA’ DELLA PROBABILITA’ DI UN EVENTO • La probabilità di un evento è un numero compreso tra 0 e 1 0  Pr(E)  1 • La probabilità di un evento certo è 1P(S) = 1 • La probabilità di un evento impossibile (o di un insieme vuoto) è “0” • La probabilità dell’evento complementare (Ē) di E è data dalla differenza tra la probabilità di tutto lo spazio campionario (1) meno quella dell’evento P(Ē)=1-P(E)

  20. E PROBABILITA’ DELL’UNIONE DI EVENTI:REGOLA DELLA SOMMA P(EF) = P(E)+P(F)-P(EF) • P(EF) = P(E)+P(F) per eventi disgiunti F intersezione

  21. ESEMPIO LANCIO DI 1 DADO S=[1,2,3,4,5,6] A=[ESCE UN NUMERO PARI] B=[ESCE 2,3,5] P(AB)=?

  22. ESEMPIO Consideriamo 2 gruppi sanguigni a cui una persona può appartenere: 0, B Ipotizzando di conoscere le due probabilità P(gruppo 0)=0.46 P(gruppo B)=0.08 Ci chiediamo qual è la probabilità che un individuo appartenga ad uno dei due gruppi i due eventi sono incompatibili  DISGIUNTI P(gruppo 0  gruppo B) = 0.46+0.08=0.54

  23. ESEMPIO Supponiamo di avere i seguenti dati P(gd o Fd)=0.3 + 0.60 - 0.25 = 0.65 P(gd o fe) = 0.3 + 0.05 =0.35

  24. LA PROBABILITA’ DI UN EVENTO CONDIZIONATA AD UN ALTRO EVENTO LA PROBABILITA’ CONDIZIONATA E’ LA MISURA CHE ESPRIME LA FIDUCIA CHE UN EVENTO SI VERIFICHI DATO CHE UN ALTRO SI E’ GIA’ VERIFICATO. Dati due eventi A e B, se P(B)>0, allora la probabilità che A si verifichi dato B, è chiamata Probabilità Condizionata e si indica con: P(A|B) P(A dato B) IL FATTO CHE L’EVENTO B SI SIA GIA’ VERIFICATO FA RESTRINGERE LO SPAZIO DEI POSSIBILI ESITI PER A, TALE SOTTOINSIEME E’ DEFINITO IN MODO DA CONTENERE TUTTI E SOLTANTO GLI EVENTI CHE RAPPRESENTANO IL VERIFICARSI DELL’EVENTO CONDIZIONANTE

  25. ESEMPIO Supponiamo di avere i seguenti dati P(Fd|Ge) = 0.05/0.15 = 0.33 P(Fd|Gm) = 0.30/0.55 = 0.54

  26. ESEMPIO SI CONSIDERI L’ESTRAZIONE SENZA REIMMISSIONE DI DUE CARTE DAL MAZZO A = LA PRIMA CARTA E’ PICCHE B|A = LA SECONDA CARTA E’ PICCHE P(A) = 13/52 P(B|A) = 12/51

  27. PROBABILITA’ DELL’INTERSEZIONE TRA EVENTI: REGOLA DEL PRODOTTO Dati due eventi A e B, P(A  B) = P(A|B)P(B) = P(B|A)P(A) P(A|B)=P(A  B) /P(B) dove P(A|B) è la probabilità condizionata di A dato B e con P(A  B) si indica la probabilità congiunta degli eventi A e B

  28. INDIPENDENZA TRA EVENTI Se due eventi A e B sono indipendenti allora l’avverarsi di 1 non incide sull’avverarsi di un altro La probabilità condizionata di A dato B diventa P(A|B) = P(A) La probabilità dell’intersezione diventa P(A  B) = P(A|B)P(B) = P(A)P(B)

  29. Si lancia una coppia di dadi la somma dei risultati è 6, qual è la probabilità che uno dei due dadi segni 2? A= SOMMA E’ 6 (si è già verificato) B= UN DADO SEGNA 2 P(B|A) = P(B ∩ A)/P(A)= (2/36)/(5/36) = 2/5

  30. Popolazione: 750 individui 100 maschi e 150 femmine con schizofrenia (MSi e FSj) 200 maschi e 300 femmine con depressione (MDi e FDj) Consideriamo i tre eventi così definiti B1={Estrarre una persona con schizzofrenia} Pr(B1)= [250/750] C1={Estrarre una maschio} Pr(C1)= [300/750] QUAL’E’ LA PROBABILITA’ DI ESTRARRE UN MASCHIO CON SCHIZZOFRENIA? Pr(B1 ∩ C1 ) = ?

  31. LA PROBABILITA’ CONDIZIONATA E’ Pr(C1 |B1) = Pr(C1 ∩ B1) / Pr(B1) = (100/750)/(250/750) = 100/250 = 0.4 PER LA REGOLA DEL PRODOTTO Pr(C1 ∩ B1) = Pr(C1 |B1) Pr(B1) = (100/250)(250/750) = 100/750 = 0.133 INDIPENDENZA Pr(C1 ) = (100+200)/750 =300/750 = 100/250 = 0.4 =Pr(C1 |B1) C1 E B1 SONO INDIPENDENTI Infatti Pr(C1 )Pr(B1 ) = (300/750)*(250/750) = 100/750 =0.133 = Pr(C1 ∩ B1)

  32. GLI ESAMI DIAGNOSTICI SERVONO PER DETERMINARE L’EVENTUALE PRESENZA/ASSENZA DI UNA MALATTIA IN UN DETERMINATO SOGGETTO Questi esami hanno come obiettivo il discriminare i soggetti malati da quelli sani, relativamente alla condizione esaminata TEST DIAGNOSTICI - amniocentesi - duo/triplo test - Ecografie, TAC PROGRAMMI DI SCREENING - neoplasia della mammella - neoplasia della cervice uterina - insufficienza tiroidea (neonati)

  33. VALUTAZIONE DELLA PERFORMANCE DI UN TEST DIAGNOSTICO Non esistono test diagnostici che forniscono risultati certi ed affidabili in tutte le situazioni e nel 100% dei casi. L'esito deve essere visto come una indicazione di «probabilità». La probabilità di ottenere risultati «veri» (cioè aderenti alla realtà) è soprattutto legata al tipo di test, non tutti i test raggiungano la stessa probabilità, è possibile invece stilare una sorta di “classifica” della performance dei vari test. Nella situazione più semplice un esame diagnostico fornisce un risultato che può essere espresso come: “esame positivo”/”esame negativo”. Anche gli esami il cui il risultato è espresso su scala continua sono interpretati come Positivi e negativi, identificando dei valori soglia

  34. SCHEMA PER LA VALUTAZIONE DELLA PERFORMANCE DI UN TEST DIAGNOSTICO A A A A A i soggetti

  35. RIULTATI GOLDEN TEST V.P F.P. F.N. ESITO GOLDEN TEST In base ai risultai del Golden Test si riempiono le 4 celle della TABELLA DI CONTINGENZA La PERFORMANCE di un test dipende dalla quota di risultati falsi-positivi e falsi-negativi generati applicando il test ad una popolazione nella quale la malattia è presente (diagnosticata con il test gold standard). V.N

  36. SENSIBILITA’ E SPECIFICITA’ La SENSIBILITA’ e la SPECIFICITA’ sono le due misure principali che vengono impiegate per valutare la capacità del test di individuare, fra gli individui di una popolazione, quelli provvisti del «carattere» ricercato e quelli che invece ne sono privi. In pratica, per i nostri scopi, il «carattere» è rappresentato quasi sempre dalla malattia o dall'infezione.

  37. La sensibilità indica la capacità del test di identificare correttamente gli individui ammalati. In termini di probabilità, la sensibilità è la probabilità che un soggetto ammalato risulti positivo al test; si può anche dire che essa è la proporzione di soggetti ammalati che risultano positivi al test. SENSIBILITA’:P(T+|M+) =1- P(T-|M+) i soggetti

  38. Ad un esame superficiale, potrebbe sembrare che la sensibilità sia l'unica qualità desiderabile in un test: infatti, sembrerebbe un eccellente risultato il poter identificare correttamente tutti i soggetti con la malattia impiegando un test con una sensibilità del 100%. Tuttavia, esaminando meglio la questione, si giunge alla conclusione che la suddetta qualità non è sufficiente. Infatti, è necessario anche un altro requisito: il test deve identificare come positivi soltanto i soggetti che hanno la malattia; cioè, è necessario che fra i positivi al test non siano inclusi anche degli individui sani.

  39. La specificità è la capacità del test di identificare correttamente i soggetti sani. In termini di probabilità, la specificità è la probabilità che un individuo sano risulti negativo al test; si può anche dire che essa è la proporzione di sani che risultano negativi al test. SPECIFICITA’:P(T-|M-) = 1- P(T+|M-) i soggetti

  40. FALSI POSITIVI E FALSI NEGATVI Falso negativo: esito negativo del test su un individuo malato P(falso negativo) = P(T-|M+) =1- Sens Falso positivo: esito positivo del test su un individuo sano P(falso positivo) = P(T+|M-) = 1- Spec

  41. Esempio sul calcolo della sensibilità e specificità Test basato sulla fosfocreatinchinasi per l’infarto miocardico Sensibilità = P(T+|M+)=215/230=0.93 Specificità =P(T-|M-)=114/130=0.88 P(falso positivo) =P(T+|M-)=1-specificità=16/130=0.12 P(falso negativo) =P(T-|M+)=1-sensibilità=15/230=0.07 Frequenza di malattia nel campione = Prevalenza = P(M+)=230/360=0.64

  42. MASSIMIZZAZIONE DI SENSIBILITA’ E SPECIFICITA’: L’INFLUENZA DEL VALORE SOGLIA Finora abbiamo illustrato le caratteristiche di un ipotetico test presumendo che esso fornisse risultati del tipo positivo/negativo oppure sano/malato oppure si/no. In altri casi, però, i test forniscono risultati classificabili in più di due categorie oppure su scala continua. In questo ultimo caso i risultati del test devono essere comunque “ dicotomizzati ” e la scelta della soglia che identifica il passaggio da POSITIVO A NEGATIVO (cut-off) influenza sensibilità e specificità del test e la loro massimizzazione contemporanea

  43. DISTRIBUZIONI DEI VALORI DEL TEST NELLE DUE POPOLAZIONI 1) TEST NEGATIVI TEST POSITIVI SOGLIA = 1 SENS = 100% SPEC = 100% 2)

  44. Il valore di cut-off influenza sia la sensibilità che la specificità del test. Esso viene scelto in base ad una serie di considerazioni: ad esempio, deve essere ben nota la storia naturale della malattia, nonché le conseguenze sanitarie ed economiche dei falsi negativi e dei falsi positivi. Nel caso di alcune malattie infettive, talvolta anche un solo falso negativo può risultare particolarmente pericoloso, in quanto escretore dell'agente di malattia e quindi “disseminatore” del contagio.

  45. LA SCELTA MIGLIORE E’ QUELLA DEL COMPROMESSO

  46. Esempio: esame clinico dei linfonodi (confrontato con il test Gold standard dell’esame istologico dei linfonodi) per la diagnosi di metastasi di tumori solidi

  47. SCELTA DEL CUT-OFF: PRIVILEGIARE LA SENSIBILITA’ O LA SPECIFICITA’ UN TEST SENSIBILE DOVREBBE ESSERE SCELTO QUANDO LE CONSEGUENZE DI UNA MANCATA DIAGNOSI SONO PARTICOLARMENTE GRAVI (es. malattie ad esito solitamente mortale, ma che possono essere efficacemente curate). I test sensibili sono utili anche durante il processo diagnostico iniziale, al fine di ridurre il ventaglio di possibilità (diagnosi differenziale) quando esso è ampio. In tal caso, il test sensibile viene applicato soprattutto allo scopo di escludere una o più malattie. Infatti, un test sensibile è di maggior aiuto al clinico quando fornisce un risultato negativo. UN TEST SPECIFICO E’ PARTICOLARMENTE UTILE QUANDO UN RISULTATO FALSO POSITIVO E’ PARTICOLARMENTE DANNOSO (sotto l'aspetto organico, emotivo per il proprietario, finanziario ecc.).

  48. LE CURVE R.O.C. (Receiver Operating Characteristic) Le Curve ROC sono un ulteriore e più moderno approccio per valutare la capacità discriminatoria di un Test (ACCURATEZZA DIAGNOSTICA). Questa rappresentazione grafica :Traccia la probabilità di un risultato vero positivo (sensibilità) in funzione della probabilità di un risultato falso positivo per una serie di punti di cut-off Le curve ROC si utilizzano per: • Scegliere il valore soglia + o – consono alle conseguenze diagnostiche del test in base ai punti che formano la retta • Paragonare due diversi Test per la diagnosi della stessa malattia in base alla grandezza dell’area sotto le curve

  49. A A DISEGNARE LE CURVE ROC La curva si ottiene a partire dai valori di sensibilità e di specificità del test a varie soglie mediante la rappresentazione di punti in un piano cartesiano i cui assi sono definiti da “Sensibilità” e “1 – Specificità” TEST PERFETTO TEST INUTILE TEST A TEST B TEST SENS=SPEC

  50. LE CURVE PARTONO SEMPRE DAL PUNTO (SE=0, SP=1) CHE INDICA CHE NESSUN PAZIENTE RISULTERA’ POSITIVO AL TEST E TERMINANO NEL PUNTO (SE=1,SP=0) CHE EQUIVALE A DIRE CHE TUTTI I SOGGETTI RISULTERANNO POSITIVI AL TEST • UN TEST INFALLIBILE E’ QUELLO NEL QUALE ESISTE UNA SOGLIA TALE PER CUI LA CURVA COINCIDE CON IL PUNTO (SE=1, SP=1), L’AREA SOTTO LA CURVA IN QUESTO CASO E’ UGUALE A 1

More Related