1 / 45

ENERGETYKA JĄDROWA

ENERGETYKA JĄDROWA. TADEUSZ HILCZER. Podstawy bezpieczeństwa energetyki jądrowej. Podstawy bezpieczeństwa energetyki jądrowej. Obiekt jądrowy uważa się za bezpieczny, gdy przy normalnej eksploatacji, zakłóceniach i awariach projektowych zapewnione jest nie przekroczenie dopuszczalnych :

zia
Download Presentation

ENERGETYKA JĄDROWA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ENERGETYKA JĄDROWA TADEUSZ HILCZER

  2. Podstawy bezpieczeństwa energetyki jądrowej

  3. Podstawy bezpieczeństwa energetyki jądrowej • Obiekt jądrowy uważa się za bezpieczny, gdy przy normalnej eksploatacji, zakłóceniach i awariach projektowych zapewnione jest nie przekroczenie dopuszczalnych : • wielkości dawek napromieniowania personelu i ludności • wielkości uwolnionych substancji promieniotwórczych do otoczenia. Tadeusz Hilczer, wykład monograficzny

  4. Podstawy bezpieczeństwa energetyki jądrowej • Bezpieczeństwo obiektu jądrowego zapewniane jest przez: • właściwy wybór lokalizacji • ustanowienie niezbędnej strefy ochronnej wokół obiektu • wyposażenie obiektu w układy bezpieczeństwa • wysoką jakość • projektu układów i urządzeń mających wpływ na bezpieczeństwo • produkcji urządzeń i materiałów • robót budowlano-montażowych • utrzymanie w nienagannym stanie technicznym układów i urządzeń ważnych z punktu widzenia bezpieczeństwa • eksploatację obiektu zgodnie z przepisami i instrukcjami • wysokie kwalifikacje personelu eksploatacyjnego. Tadeusz Hilczer, wykład monograficzny

  5. Podstawy bezpieczeństwa energetyki jądrowej • Zapewnieniu bezpieczeństwa reaktorów jądrowych służy: • system przepisów i szczegółowych norm technicznych (krajowych i międzynarodowych), • rygorystyczny system zapewnienia jakości podczas • budowy, • rozruchu, • eksploatacji, • rozbiórki • nadzór prowadzony przez państwowe organa dozoru, • analiza możliwych (nawet mało prawdopodobnych) awarii które mogłyby doprowadzić do zagrożenia mieszkańców na obszarze wokoło elektrowni. Tadeusz Hilczer, wykład monograficzny

  6. Podstawy bezpieczeństwa energetyki jądrowej • Koncepcja głębokiej obrony - obejmuje trzy kolejne poziomy bezpieczeństwa: • I poziom bezpieczeństwa • projekt zapewnia w czasie normalnej eksploatacji • maksymalne bezpieczeństwo • maksymalną odporność na zakłócenia • projekt wymaga wysoką jakość wykonania • projekt zakłada możliwości inspekcji i prób • przed odbiorem • w czasie całego okresu pracy. Tadeusz Hilczer, wykład monograficzny

  7. Podstawy bezpieczeństwa energetyki jądrowej • Koncepcja głębokiej obrony - obejmuje trzy kolejne poziomy bezpieczeństwa: • II poziom bezpieczeństwa • zakłada, że awarie wystąpią pomimo starannego projektowania, budowy i eksploatacji. • wprowadza układy bezpieczeństwa których zadaniem jest: • ochronić załogę i okolicznych mieszkańców • zabezpieczyć przed stratami, jeśli wydarzą się awarii Tadeusz Hilczer, wykład monograficzny

  8. Podstawy bezpieczeństwa energetyki jądrowej • Koncepcja głębokiej obrony - obejmuje trzy kolejne poziomy bezpieczeństwa: • III poziom bezpieczeństwa • dodatkowe systemy bezpieczeństwa na podstawie oceny przebiegu hipotetycznych awarii zakładając, że pewne układy bezpieczeństwa zawiodą w momencie awarii, przed którą miały one zabezpieczyć. Tadeusz Hilczer, wykład monograficzny

  9. Podstawy bezpieczeństwa energetyki jądrowej • I poziom bezpieczeństwa • układy pracujące normalnie w czasie eksploatacji elektrowni • II poziom bezpieczeństwa • układy do natychmiastowego wyłączenia reaktora przy przekroczeniu maksymalnie dopuszczalnych parametrów pracy, zapewniające chłodzenie rdzenia nawet w przypadku rozerwania obiegu pierwotnego lub układu prętów bezpieczeństwa. • III poziom bezpieczeństwa • obudowa bezpieczeństwa reaktora i układy likwidacji skutków awarii. Tadeusz Hilczer, wykład monograficzny

  10. Podstawy bezpieczeństwa energetyki jądrowej • Źródłem zagrożenia radiologicznego są produkty rozszczepienia zawarte w paliwie znajdującym się w rdzeniu reaktora. • Bezpieczeństwo radiologiczne polega na zabezpieczeniu przed niekontrolowanym wydostaniem się i rozproszeniem substancji promieniotwórczych. • Podczas pracy reaktora wodnego o mocy 1000 MW(e) aktywność produktów rozszczepienia osiąga 3,7 1020 Bq • przy niekorzystnych warunkach atmosferycznych mogą spowodować wystąpienie maksymalnej dawki dopuszczalnej w odległości 1 km od elektrowni jądrowej. Tadeusz Hilczer, wykład monograficzny

  11. Podstawy bezpieczeństwa energetyki jądrowej • „Koncepcja głębokiej obrony” wymaga przy projektowaniu obiektu jądrowego analizy urządzeń, układów i konstrukcji ze względu na funkcję, jakie spełniają w bezpiecznej eksploatacji - funkcji bezpieczeństwa • Funkcje bezpieczeństwa - zgrupowane w czterech klasach bezpieczeństwa. • Najważniejsze funkcje związane z bezpieczeństwem zaliczane do pierwszej klasy, nieco mniej ważne do drugiej, itd. • Klasyfikacja bezpieczeństwa jest podstawą do różnicowania wymagań projektowych i jakościowych dla poszczególnych układów. Tadeusz Hilczer, wykład monograficzny

  12. Podstawy bezpieczeństwa energetyki jądrowej • Realizacja „koncepcji głębokiej obrony” - stosowanie czterech podstawowych zasad projektowania: • 1 - zwielokrotniania układów • Celem zwiększenia niezawodności eksploatacyjnej układy ważne dla bezpieczeństwa obiektu jądrowego projektuje i wykonuje w postaci trzech (200% rezerwy) lub dwóch (100% rezerwy) równoległych, odrębnych i analogicznych grup technologicznych nie mających ze sobą żadnych elementów wspólnych, ani w części technologicznej, ani w części zasilania elektrycznego, ani w układach kontroli i sterowania. • Do spełnienia przez układ swojej funkcji wystarcza w zupełności praca tylko jednej grupy technologicznej. Tadeusz Hilczer, wykład monograficzny

  13. Podstawy bezpieczeństwa energetyki jądrowej • Realizacja „koncepcji głębokiej obrony” - stosowanie czterech podstawowych zasad projektowania: • 2 - - zróżnicowania układów pełniących te same funkcje • To samo zadanie w zakresie bezpieczeństwa realizowane jest przez układy skonstruowane w oparciu o różne zasady działania. • Przykład - równoległe stosowanie na jednym rurociągu trzech zaworów o różnym napędzie: • elektrycznym, • hydraulicznym, • mechanicznym. Tadeusz Hilczer, wykład monograficzny

  14. Podstawy bezpieczeństwa energetyki jądrowej • Realizacja „koncepcji głębokiej obrony” - stosowanie czterech podstawowych zasad projektowania: • 3 - separacja przestrzennaukładów pełniących te same funkcje • Wymagane jest • fizyczne rozdzielenie urządzeń technologicznych poszczególnych grup zwielokrotnionych układów, • fizyczne rozdzielenie tras rurociągów, kabli zasilających i sterowniczych, • Separacja musi być tak zrealizowana, aby awaria w jednej grupie nie mogła spowodować uszkodzeń w innych grupach urządzeń. Tadeusz Hilczer, wykład monograficzny

  15. Podstawy bezpieczeństwa energetyki jądrowej • Realizacja „koncepcji głębokiej obrony” - stosowanie czterech podstawowych zasad projektowania: • 4 - automatyzacji procesów ważnych dla bezpieczeństwa obiektu jądrowego • Obecnie przyjmuje się, że najbardziej zawodnym elementem w obiekcie jądrowym jest człowiek. • W sytuacjach awaryjnych, w których istnieje możliwość popełniania groźnych w skutkach błędów • przez pewien czas obiektem kieruje układ automatycznie realizujący algorytm awaryjny, • człowiek uzyskuje niezbędny czas na właściwą ocenę sytuacji i podjęcie najbardziej efektywnych działań. Tadeusz Hilczer, wykład monograficzny

  16. Podstawy bezpieczeństwa energetyki jądrowej • We współczesnych elektrowniach jądrowych wprowadza się kilka niezależnych barier, zatrzymujących produkty rozszczepienia: • paliwo z materiałów zatrzymujących ogromną większość wytworzonych w procesie rozszczepienia substancji promieniotwórczych. • koszulki elementów paliwowych, • ścianki rurociągów obiegu pierwotnego (chłodzenia reaktora), • obudowa bezpieczeństwa, obejmująca cały obieg pierwotny. Tadeusz Hilczer, wykład monograficzny

  17. Podstawy bezpieczeństwa energetyki jądrowej • Ocena bezpieczeństwa rozpatruje się wszystkie możliwe awarie i ich wpływ na niezależne bariery. • Potencjalne konsekwencje każdej awarii zależą od wyzwalanej wskutek niej ilości produktów rozszczepienia. • Zagrożenie związane z daną awarią określa się jako iloczyn prawdopodobieństwa jej wystąpienia i jej możliwych skutków. • Potencjalne zagrożenie powodowane przez elektrownie jądrową jest sumą wszystkich zagrożeń powodowanych wszystkimi możliwymi awariami. Tadeusz Hilczer, wykład monograficzny

  18. Podstawy bezpieczeństwa energetyki jądrowej • Przyjmuje się, że: • awarie występujące z dużą częstością nie mogą prowadzić do napromieniowania ludzkości i personelu, • awarie występujące rzadko mogą powodować niewielkie zagrożenia radiologiczne, • awarie występujące bardzo rzadko - Maksymalne Awarie Projektowe (MAP), mogą powodować maksymalne zagrożenie radiologiczne dopuszczalne w warunkach awaryjnych. • MAP oraz wszystkie awarie o potencjalnie mniejszych skutkach nazywa się awariami projektowymi • Awarie o skutkach większych od MAP nazywa sięawariami nadprojektowymi. Tadeusz Hilczer, wykład monograficzny

  19. Awarie projektowe • Dla każdego obiektu jądrowego określa się Maksymalną Awarię Projektową (MAP)największą przewidywaną w projekcie • na opanowanie skutków MAP musi być zaprojektowany Układ Awaryjnego Chłodzenia Rdzenia (UACR) zapewniający nie przekroczenie dopuszczalnego poziomu napromieniowania personelu i ludności. • Do kategorii awarii nadprojektowych zalicza się wszystkie, skrajnie mało prawdopodobne awarie związane z uszkodzeniem obudowy bezpieczeństwa, a także ze znacznym uszkodzeniem, czy nawet częściowym stopieniem rdzenia reaktora. Tadeusz Hilczer, wykład monograficzny

  20. Awarie MAP i nadprojektowe • Awaria typu MAP w reaktorach wodnych nigdy jeszcze się nie wydarzyła • prawdopodobieństwo jej wystąpienia jest rzędu 10-10 -10-7 na reaktor na rok • Awaria nadprojektowa zdarzyła się 26 kwietnia 1986 r. w Czamobylu • spowodowana ona została w sposób ewidentny przez człowieka, podobnie jak w przypadku innych, mniej groźnych awarii zawiodło najsłabsze ogniwo łańcucha bezpieczeństwa w technice jądrowej. Tadeusz Hilczer, wykład monograficzny

  21. Awarie projektowe • Awaria MAP w przypadku reaktorów wodnych ciśnieniowych • natychmiastowe poprzeczne rozerwanie zimnej nitki rurociągu obiegu pierwotnego o maksymalnej średnicy w pobliżu króćca wlotowego do reaktora. • rozerwanie rurociągu obiegu pierwotnego prowadzi do bardzo szybkiej ucieczki chłodziwa z obiegu chłodzenia reaktora • znaczne pogorszenie warunków odbioru ciepła z rdzenia i rozgrzewanie się paliwa • uszkodzenie rdzenia • wydzielenia się znacznych ilości produktów rozszczepienia na zewnątrz reaktora. Tadeusz Hilczer, wykład monograficzny

  22. Ciepło powyłączeniowe • Po awarii MAP mimo natychmiastowego przerwania łańcuchowej reakcji rozszczepienia, w paliwie generowana powyłączeniowa moc reaktora wynosi: • bezpośrednio po awariiokoło 7% mocy nominalnej • po godzinie około 1,2% mocy nominalnej • jest jeszczeenergia cieplna, tzw. ciepło powyłączeniowe. • Ciepło powyłączeniowe musi być odprowadzone z reaktora przez układy awaryjne. • Źródła ciepła powyłączeniowego: • rozszczepienia wywołane przez neutrony opóźnione • reakcje rozpadu promieniotwórczego izotopów znajdujących się w paliwie. Tadeusz Hilczer, wykład monograficzny

  23. Awarie reaktywnościowe • Awarie typu reaktywnościowego - nieoczekiwany i niekontrolowany wzrost mocy w rdzeniu reaktora • dużo mniej groźne dla reaktorów wodnych • reaktor wodny ma ujemny reaktywnościowy współczynnik temperaturowy. • Wzrost mocy cieplnej w rdzeniu powoduje • wzrost temperatury wody • zmniejszenie jej gęstości • zmniejszenie efektywności wody jako moderatora neutronów • zmniejszenie współczynnika mnożenia neutronów • obniżenie poziomu mocy reaktora. Tadeusz Hilczer, wykład monograficzny

  24. Awarie reaktywnościowe • W reaktorach, w których spowalniaczem jest np. grafit, współczynnik reaktywnościowy jest dodatni. • W przypadku wzrostu generowanej mocy • ubywa chłodziwa • grafit nadal spowalnia neutrony • zmniejszona masa chłodziwa mniej pochłania neutrony • strumień neutronów wzrasta • Wzrasta moc reaktora • Wzrasta temperatura rdzenia • Takimi reaktorami są np. reaktory typu RBMK elektrowni w Czamobylu. Tadeusz Hilczer, wykład monograficzny

  25. Bariery bezpieczeństwa • Obecnie standardem przyjętym na całym świecie jest system co najmniej 4 barier: • postać paliwa jądrowego, • koszulka elementu paliwowego, • granice ciśnieniowego obiegu pierwotnego, • obudowa bezpieczeństwa Tadeusz Hilczer, wykład monograficzny

  26. I bariera bezpieczeństwa • Pierwsza bariera – paliwo jądrowe • najczęściej w stanie stałym w postaci pastylek • zatrzymuje do 99%produktów rozszczepienie • przy znacznym przegrzaniu może się z niego wydostać więcej izotopów promieniotwórczych. • Wydzielanie się jąder promieniotwórczych z paliwa - głównie przezodrzut jąder w procesie rozczepienia. • paliwo metaliczne - zasięg odrzutu w materiale paliwa jest bardzo mały. • paliwo ceramiczne (pracuje przy znacznie wyższych temperaturach) - zasięg odrzutu w materiale paliwa jestznacznie większy. Tadeusz Hilczer, wykład monograficzny

  27. I bariera bezpieczeństwa • W materiale paliwowym pozostaje część produktów rozszczepienia w postaci : • roztworu stałego, • nie tworzącej roztworu stałego, która migruje do gęstszych obszarów paliwa, tworząc pęcherzyki gazowe lub wtrącenia. • w temperaturach 1900 – 2100 K występuje zjawisko wzrostu kryształów • w temperaturach od 2100 K do temperatury topnienia 3100 K tworzą się duże kryształy, co pozwala na znaczne przesunięcie pęcherzyków i tworzenie pustych przestrzeni. Tadeusz Hilczer, wykład monograficzny

  28. I bariera bezpieczeństwa • W praktyce dominującymi składnikami aktywności produktów rozszczepienia wydzielonych z paliwa jest • aktywność gazów i izotopów jodu, powstających w temperaturach powyżej 2100 K. • frakcja tych składników wzrasta szybko z temperaturą. • w temperaturze 1000 K jest ona bardzo mała • w temperaturze wzrostu kryształów osiąga 30%, • w temperaturze tworzenia dużych kryształów dochodzi do 100%. Tadeusz Hilczer, wykład monograficzny

  29. II bariera bezpieczeństwa • Druga bariera – koszulka paliwowa • wykonana najczęściej ze stopu cyrkonu, stali lub aluminium, • gazowo szczelna osłona paliwa, • dla reaktorów energetycznych dopuszczalny stopień nieszczelności • gazowej wynosi 1 %, • kontaktowej 0,1 %. • W normalnych warunkach produkty rozszczepienia wydostające się z materiału paliwowego nie przenikają do chłodziwa, lecz pozostają w szczelinie między pastylką paliwową a koszulką. Tadeusz Hilczer, wykład monograficzny

  30. II bariera bezpieczeństwa • W przypadku MAP następuje utrata chłodziwa, temperatury koszulek wzrastają a w związkuze spadkiem ciśnienia w obiegu, ciśnienie gazów rozszczepieniowych w paliwie wywołuje znaczne naprężenia rozciągające w koszulce paliwowej. • Najgroźniejsze skutki powoduje wzrost temperatury i różnice ciśnienia: • duże odkształcenia koszulki, • pęcznienie, • odsuwanie ścianki koszulki od pastylek paliwowych • blokowanie przepływu wody chłodzącej pomiędzy prętami paliwowymi Tadeusz Hilczer, wykład monograficzny

  31. II bariera bezpieczeństwa • Po odkształceniu koszulki pękają albo • w okresie wydmuchu wody z rdzenia, gdy różnica ciśnień miedzy wnętrzem pręta a obiegiem pierwotnym jest dostatecznie duża, • po rozpoczęciu zalewania, gdy na gorącą koszulkę padną krople zimnej wody z UACR. • Gazowe produkty rozszczepienia wydostają się do obiegu pierwotnego. • Odkształcone koszulki stwarzają groźbę całkowitego zablokowania przepływu chłodziwa i odcięcia możliwości odbioru ciepła z rdzenia. Tadeusz Hilczer, wykład monograficzny

  32. II bariera bezpieczeństwa • Aby wykluczyć niebezpieczeństwo uszkodzenia koszulki paliwowej • system UACRmusi zapewnić takie warunki odbioru ciepła z rdzenia przy MAP, by • temperatura koszulki nie przekroczyła 1500 K, • głębokość warstwy utlenionej w koszulce nie przekroczyła 17% jej grubości • nie doszło do zablokowania przepływu, • uniemożliwienia chłodzenia paliwa. Tadeusz Hilczer, wykład monograficzny

  33. II bariera bezpieczeństwa • W analizach zakłada się, że MAP prowadzi do • rozszczelnienia 100% koszulek paliwowych, • wydziela się 100 % promieniotwórczych gazów szlachetnych zawartych w paliwie, • wydziela się 50 % izotopów jodu, • wydziela się 1 % stałych produktów rozszczepienia. Tadeusz Hilczer, wykład monograficzny

  34. II bariera bezpieczeństwa • Groźna jeszcze bardziej nieprawdopodobna jest awaria nadprojektowa w której może zajść do stopnienia paliwa • wydzielenie znacznych ilości zawartych w paliwie • rutenu, • strontu, • baru, • gazów szlachetnych (Xe, Kr), • izotopów jodu, • izotopów talu, • izotopów cezu. Tadeusz Hilczer, wykład monograficzny

  35. III bariera bezpieczeństwa • Trzecia bariera - granice ciśnieniowego obiegu pierwotnego • Szczelny obieg pierwotny - produkty rozszczepienia nie mogą wydostać się do atmosfery, nawet w przypadku: • zaburzeń chłodzenia lub • niekontrolowanego wzrostu mocy reaktora, prowadzącego do rozszczelnienia prętów paliwowych. • Po zniszczeniu koszulek i pastylek paliwowych wydzielające się produkty rozszczepienia pozostają w granicach obiegu pierwotnego, rozpuszczone w chłodziwie utrzymywanym pod wysokim ciśnieniem w rurociągach i zbiornikach. Tadeusz Hilczer, wykład monograficzny

  36. III bariera bezoieczeństwa • Ściany ciśnieniowe obiegu pierwotnego tworzą: • – zbiornik ciśnieniowy • – ściany rurociągów • – zawory odcinające, za którymi znajdują się części niskociśnieniowe wszystkich urządzeń obiegu pierwotnego, jak pompy, wytwornice pary i stabilizatory ciśnienia. Tadeusz Hilczer, wykład monograficzny

  37. III bariera bezpieczeństwa • Rozerwanie obiegu pierwotnego: • jest to MAP • woda o temperaturze 3000 K uległa gwałtownemu odparowaniu i w ciągu kilku sekund reaktor jest opróżniony, • utrata chłodziwa prowadzi do przegrzania paliwa i stopienia pastylek paliwowych i koszulki - do zniszczenia jednocześnie trzech barier Tadeusz Hilczer, wykład monograficzny

  38. III bariera bezpieczeństwa • Szczelność obiegu pierwotnego jest podstawowym elementem bezpieczeństwa reaktora jądrowego. • W analizach bezpieczeństwa przyjmuje się, że rurociągi obiegu pierwotnego mogą ulec rozerwaniu • prawdopodobieństwo awarii wynosi 10-4 – 10-3 w ciągu 30 lat pracy reaktora. • doświadczenia eksploatacyjne wykazały, że wycieki z obiegu pierwotnego są realną groźbę. • nigdy nie doszło do rozerwania rurociągu • zdarzyło się wiele przypadków nieszczelności • w łożyskach pomp lub zaworach • z kilku przypadkach doprowadziły one do poważnych awarii reaktora. Tadeusz Hilczer, wykład monograficzny

  39. IV bariera bezpieczeństwa • Czwarta bariera - obudowa bezpieczeństwa • chroni przed wydostaniem substancji radioaktywnych które mogły przedostać się poza obręb obiegu pierwotnego. • Obudowa wykonana jest ze stali i betonu • odporny na ciśnienie, • jakie może wystąpić po rozerwaniu obiegu pierwotnego, • wyposażony w specjalne systemy pomocnicze: • zraszania, • chłodzenia, • wentylacji, • recyrkulacyjnej wewnętrznej. Tadeusz Hilczer, wykład monograficzny

  40. IV bariera bezpieczeństwa • Dopuszczalne przecieki z obudowy bezpieczeństwa na zewnątrz do atmosfery wynoszą (0,1 - 1) % objętości obudowy na dobę. • Aby zabezpieczyć się przed ewentualnym rozszczelnieniem układu, którego część jest wewnątrz, a cześć na zewnątrz obudowy, na rurociągu przechodzącym przez ściany obudowy bezpieczeństwa są po obu stronach zawory odcinające, zamykane automatycznie w przypadku awarii. • Główne zagrożenie dla człowieka - izotopy jodu Tadeusz Hilczer, wykład monograficzny

  41. IV bariera bezpieczeństwa • Obudowa bezpieczeństwa musi być odporna na działanie zjawisk zewnętrznych: • wstrząsy sejsmiczne o maksymalnym natężeniu, jakie może wystąpić w okolicy, • działanie huraganów łącznie z uderzeniami przedmiotów unoszących się przez wiatr o prędkości dochodzącej do 350 km/h, • wybuchy substancji, przewożone w sąsiedztwie elektrowni, • uderzenie samolotu • … Tadeusz Hilczer, wykład monograficzny

  42. IV bariera bezpieczeństwa • Obudowa bezpieczeństwa musi być odporna na działanie zjawisk wewnętrznych: • działanie tnące strugi parowo-wodnej • skutki awarii w sąsiednich budynkach, • uderzenie łopatek turbiny po rozerwaniu jej kadłuba w maszynowni • … Tadeusz Hilczer, wykład monograficzny

  43. IV bariera bezpieczeństwa • W obudowie bezpieczeństwa z podwójnymi ścianami znajdują się: • zbiornik zawierający rdzeń reaktora • obieg pierwotny z wytwornicami pary i pompami cyrkulacyjnymi. • Ściana wewnętrzna - szczelna powłoka stalowa. • Ściana zewnętrzna - powłoka żelazobetonowa. • Obie ściany zapewniają wymaganą wytrzymałość i osłonę przed ewentualnym promieniowaniem w razie awarii. • Pomiędzy obu powłokami jest podciśnienie, • gazy z tej przestrzeni odprowadzane są do filtra, skąd po oczyszczeniu przepływają do komina wentylacyjnego. Tadeusz Hilczer, wykład monograficzny

  44. IV bariera bezpieczeństwa Tadeusz Hilczer, wykład monograficzny

  45. IV bariera bezpieczeństwa • Układy zraszania zaczynają wtryskiwać wodę do wnętrza obudowy po upływie 20 – 30 s od chwili rozerwania rurociągu. • Woda zraszająca jest doprowadzona pod niewielkim ciśnieniem do dysz i sit zraszających. • Do wody zraszającej dodane są środki chemiczne reagujące z jodem, (hydrazyna, tiosiarczan sodu). • Jod z elementów paliwowych występuje w trzech postaciach: • pary jodu w postaci molekularnej, • jodu osadzonego na cząsteczkach lotnych, • jodu w związkach organicznych, głównie jodku metylu. • Związki organiczne jodu najtrudniej jest zatrzymać w układach bezpieczeństwa. Tadeusz Hilczer, wykład monograficzny

More Related