1 / 21

Teoria sterowania

Teoria sterowania. Wykład 2 Sygnały w układach sterowania.

april-casey
Download Presentation

Teoria sterowania

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teoria sterowania Wykład 2 Sygnały w układach sterowania.

  2. Sygnał w układzie sterowania jest przebiegiem w czasie dowolnej wielkości fizycznej. W przemysłowych układach sterowania rozróżnia się sygnały elektryczne (przebiegi napięcia lub prądu), sygnały hydrauliczne (przebiegi ciśnienia i przepływu oleju) oraz sygnały pneumatyczne (przebiegi ciśnienia i przepływu powietrza).

  3. Amplituda F1  1 Sygnały zdeterminowane to takie przebiegi czasowe, które dają się opisać za pomocą określonych zależności matematycznych (funkcji). Sygnały okresowe 1. Sygnały sinusoidalne

  4. 2. Sygnały okresowe - niesinusoidalne Amplituda 0 1 4 5 2  3

  5. f(t) 0 0 t f(t) 0 0 t Sygnały nieokresowe

  6. f(t) 0 t f(t) f(t) t t f(t) t Inna klasyfikacja sygnałów Sygnały ciągłe Sygnały dyskretne Sygnały impulsowe Sygnały cyfrowe

  7. e(t) Poziomy kwantowania Tp 2Tp 3Tp 4Tp5Tp6Tp t Sygnał cyfrowy

  8. x1 t x2 t xn t t3 t1 t2 Sygnały stochastyczne Sygnały stochastyczne (losowe) są realizacjami procesu stochastycznego (losowego). Reprezentacją procesu stochastycznego jest zbiór jego realizacji. Reprezentacją procesu stochastycznego w określonej chwili jest zmienna losowa. Proces stochastyczny jest nieskończenie wymiarową zmienną losową.

  9. F(x) 1 0 x

  10. Funkcja gęstości prawdopodobieństwa f(x) f(x) 0 x

  11. Charakterystyki statyczne obiektów, regulatorów i układów regulacji automatycznej

  12. y z Charakterystyki statyczne URA Charakterystyka statyczna układu regulacji automatycznej określa własności tego układu w stanach ustalonych, czyli wtedy, gdy nie zachodzą zmiany w czasie sygnałów związanych z układem (sygnał zadany w, sygnał regulowany y, błąd regulacji e, sygnał sterujący u i zakłócenie z pozostają w czasie niezmienne). Charakterystykami statycznymi układu automatycznej regulacji są zależności przy z = const przy w = const y z = const w 0 0 w

  13. Charakterystyki statyczne obiektu regulacji i regulatora Charakterystyka statyczna obiektu regulacji określona jest zależnością um u y z = z-1 z = z0 z = z1 – em z-1z0 z1 em e – um 0 u Charakterystyka statyczna regulatora opisana jest równaniem Równanie charakterystyki statycznej regulatora w zakresie liniowym ma postać u = kpe (2.1)

  14. Błąd regulacji: e = w - y (2.2) Zatem u = kpe = kp(w – y) u = - kpy + kpw (2.3) Równanie (2.3) reprezentuje linię prostą y kpw z = z-1  z = z0 w z = z1 z-1z0 z1 u 0 u Wyznaczanie punktów równowagi statycznej URA y e-1 e1 w kp = ctgφ φ kpw

  15. Podstawowe przebiegi regulacyjne w układzie regulacji automatycznej

  16. Schemat blokowy układu regulacji automatycznej + y(t) - sygnał sterowany (sygnał regulowany, wielkość regulowana), w(t) - sygnał zadany (wartość zadana) wielkości regulowanej, e(t) = w(t) – y(t) - sygnał błędu sterowania (uchyb regulacji), u(t) - sygnał sterujący (sterowanie), z(t) - sygnał zakłócający (zakłócenie).

  17. y t Przebiegi wielkości regulowanej y(t) po podaniu na wejście zadające układu skoku jednostkowego 1(t) 1(t) 0

  18. Przebiegi wielkości regulowanej y(t) po podaniu na wejście zakłócające układu skoku jednostkowego 1(t) y w+1 w t 0

  19. Przebiegi błędu regulacji e(t) po podaniu na wejście zadające układu skoku jednostkowego 1(t) e 1 0 t

More Related